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In this paper on the basis of the Chapman-Kolmogoroff-Smoluchowski equation
(C. K. 8.) the theory of stochastic processes uniform on a point group and in time is de-
veloped and a comparison with the theory of Ivanov is given (Zh. Eksper. Teor. Fiz., 45,
1509 (1963)). It is also shown that the theory is very useful for the description of anisotropic
molecular reorientation in liquids and molecular crystals. Application in the case of dipole
dielectric relaxation gives the rule: if a molecular reorientation is uniform in time, the
molecules having C,, with # > 2 or a higher symmetry and strong intermolecular interactions
and dispersion of local electric field are neglected, then the Cole-Cole diagram must be a
semi-circle. Calculations of T) and T for nuclear dipole reorientational relaxation in the
case of N like spins I are also presented. The resulis in the case of diffusional reorientation
are equivalent to those of Huntress (J. Chem. Phys., 48, 3524 (1968)).

1. Introduction

In the last few years there have been many papers published about the anisotropic
rotational motions in liquids. Most of the theoretical works (Mishima [1], Kometani,
Shimizu [2], Huntress [3]) are based on different versions of the rotational diffusion
equation (Favro [4], Steele [5]) with constant or time-dependent diffusion coefficients.
The diffusion coefficients if they depend on time are deduced from the Langevin equation.
A different method which may be used also for jump reorientation was given by Ivanov [6].
He obtained the density of the conditional probability of a molecular reorientation from
the group properties of the molecular motion, making same special assumptions about
the stochastic nature of the processes. Our considerations follow along the same lines
because we also omit the rotational diffusion equation. However, the theory given by us
is more general and concise since it is based on the Chapman-Kolmogoroff-Smoluchowski
equation.
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2. Stochastic processes on the O3 group

Every space orientation of a rigid molecule can be described by using the element
g € OF which transforms the molecular frame into the laboratory frame. Thus the density
of the conditional probability that a molecule will have an oriensation g at a time ¢ if it
has the orientation g, at the time ¢4, is the function of all four arguments giveh above.
As a result we should write this density as P(g, ¢; o, o). The range of this function is
the Cartesian product O3 x O3 thus we are able to give it as a double series of generalized
spherical harmonics D! (g) in the meaning of Wigner’s or Gelfand’s definitions. The har-
monics D',(g) create a base in Hilbert space H(O3) on the O3 group and

P(gatégo,to) Z g Z Cfrllnm n([ tO)X

LI'=0 mun=—1 m'n'=-0
x N Q@I+1) 2 +1) Dyn(8 ™ IDivm(80)- 1)
"The above-written series is constructed in the following way. For ¢t = 1,
Cﬁr’; n; o, w805 10) = Oy OO

and (2.1) gives us the Dirac delta function d(g~'go). The last conditions must be fulfilled
because at the time #, the molecule must have the orientation g,. We assume now that
‘the reorientation represents a certain continuous Markoff process, so the C. K. S. equa-
tion is valid in this case

P(g, t; 8o, 1o) = OI+ P(g, t; g1, t)P(g1, 115 8o» t0)dgy (2.2)
3

where | denotes the invariant integration on the O3 group. This integration cannot be
[0 2%
normed to unity but to 872 because probability properties demand such a normalization.

Let us construct the operator C(¢, #,) in the space H(O3) with the matrix representation
Cf,',:n; wat, o) Where rows are numbered by /, m, n and columas by I',m',n'. Using (2.2)
and (2.1) as well as the preperiies of the harmonics we have

C(t> tO) = C(t, tl) C(tl ’ tO) (23)

and additional conditions

O

Clto, t0) = E  C(o0, 1) = . . 2.4)

The last of these follows from P(0, g; to, 8o) = . Now we may see that any

872
Markoff process which describes the reorientation of a rigid molecule, can be performed
by a two-parameter operator C(t, fo). This operator maintains (2.3) and (2.4) and must
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guarantee the reality and non-negativity of (2.1). In practice neither the necessity nor
the possibility of using this description exists. However, now we are able to see how much
simpler the situation is when the reorientational process occurs uniform in time and on
the group. It means that

P(g, t; 80, 1) = P(g7'go; t— 1) 2.5)
and now
P(g™"go, t—1,) €H(O7)

so (2.1) is replaced by

0 1
1 ) ) ) _ .
P(g 'ge, t—tg) = P Z Z QI+ 1)C, (i —t6)Dhn(g ™ " 80)- (2.6)

I=0 mp=-1

Eventually if we construct a (2/41)-dimensional matrix C’(t—to) using Cl, for every
single / number (2.6) can be written in the form

1 ,
P(g™ 'go, t—to) = e Z QI+1) Tr [CY(t—1)D' (g™ " g0)] 2.7
1=0

where D'(g) is the irreducible representation with the weight I of the O3 group. Short
calculations of (2.6) and (2.2) lead at once to the conclusion

Clt—tg) = Ci(t—1,)C(t, — o). (2.8)
The initial conditions and the condition at 7—75 = o0 give
C(0) = E, CYw) = Edy,. (2.9)

If, in addition we assume continuity with 7, the C'(¢) matrices are (2/+-1)-dimensional
representations of a one-parameter Abelian group with —oo < ¢ < 0. Obviously we are
interested only in 7> 0. The representations discussed have the form

Cl(y = &° (2.10)

where B’ for I > 0 are nonsiﬁgular matrices which have eigenvalues with a negative real
part, as a consequence of (2.9). The real parts of these eigenvalues taken with opposite
signs are simply equal to correlation times t*™. Thus for every representation CY(t)
there exist no more than 2/4-1 different correlation times.

One of the conditions which can cause a reduction of the number of different correla-
tion times for some / is the reality of P(g—1go, 1—1,). It may easily be seen if we take into
account D',(g) given by the definition of Gelfand [7]. In this case the part of D}, (g)
depending on 9 (second Euler angle) P;, (9) fulfills the relation

Pﬁnn(‘g) = (_' 1)m-}—n‘Pl—m,—n(‘~9)'
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This relation together with (2.6) gives us
CL(H) = (=1)"*"CL,, (D). .11
Introducing the matrix R by the following definition
(Rl)mn’ = 5m,—n'(_1)m

we may have (2.11) in the form
Cft) = RC(HR ™. (2.12)

The second cause which may reduce the number of different correlation times is the
molecular symmetry. For greater molecules it should not be the total symmetry but rather
an “external” symmetry connected with the most external atoms. This is because external
atoms determine the short range interaction with the environment and produce the “free
volume.

Let us suppose that s € Gy where Gy is a molecular symmetry group. The symmetry
leads to the following relation for the conditional probability of density

P(t,g7"g0) = P(t,s7'g~'557"go5) (2.13)
and together with (2.7) we obtain
D'(5)C(HD'(s™Y) = C(). (2.14)

However, D'(s) as the G, group representation in many cases can be reduced. So
after a transformation to the canonical base (the base in which the matrix D'(s) has an
irreducible quasidiagonal form):

QD)™ = (JkBE(k)@l’k(S)
where E, describes the unity matrix. The dimension of this unity matrix is equal to the

multiplicity of the appearance of the irreducible representation I'i(s) in the D '(s) represen-
tation. The equality shown above may be written in the following way:

Co(t) = QC'(HQ ™" = @“’"’(t)@E“X (2.15)
Here
Dlm ﬂ.(l,k) = Dlnl E(k)’ Dlm E(k) = Dlm I’k

and E® is another unity matrix. Bringing together (2.11) and (2.15) and writing T’ =
= QRQ! we obtain the equation

T{@i"PHREP}IT™ = @A"™(H)QEY (2.16)
k k
which can reduce the number of the linear independent A" matrix elements or, which

means the same, the number of different correlation times for a given /. Let the correlation
times for different / be independent as long as additional physical conditions do not exist.
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A simple illustration can be found for spherical molecules. In this case A%? is one-dimen-
sional and one can write A&P = 1, so

Co(ty = C'(t) = AE.

Moreover, from (2.16) A, = 1, which results in
t
Ci(t) =e “E'

where 7' is the correlation time. Inserting the last equation into (2.7) we obtain

i~ -t
P(g'lgo,t—to)=8—7?2(21+l)e “1'(g™ " 20) 2.17)
1=0

where
%(g) = TrDY(g).

Such a result is valid for an isotropic reorientation. If we wanti, however, to have not
only the isotropic reorientation but also diffusional reorientation, (2.17) should fulfill the
rotational diffusion equation [8]. This gives us an example of the above-discussed addi-
tional condition because (2.12) represents the solution of the isotropic rotational diffusion
equation only if (‘z:‘l)—1 = I(/+1) D,, where D, is the rotational diffusion coefficient. As

a result ties are established between all correlation times 7'

3. Comparison with the method of Ivanov and the role of molecular symmetry in this method

Ivanov has proposed a different method for investigating the reorientational process
uniform in time and on the OF group. Following him, we assume that the molecular
rotational motion is a jumping one. By analogy to the previous paragraph one can introduce
the function P(g, N; go, No) with gives us the density of the conditional probability for an
orientation g after N jumps if after N, jumps g, orientation was observed. The uniformity
in time and jump space leads to the following relation

P(g, N; 8o, No) = P(g7"go, N~ No). 3.1

Now replacing in (2.2) and (2.6) t~1, by N— N, and C'(t—1,) by 4'(N—N,) after applying
to (3.1) a procedure similar to that in (2.5) we find

A(N—=Ng) = A(N—N)A(N,—N,). (3.2)

Taking into account the initial condition P(g~'g, 0) = d(g*g,) one may easily prove
that the discussed processes are determined by the function

1 0
P(g™"g0) = P(g7'g0, ) = = » (2+1) Tr [4'(1)DY(g™"g)] (33)
8n
=0
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because
= } 1 R - -
P(g7' g0, N=No) = o Z(le)Tr {{47" "D (g™ go)} (3.4)
1=0
where
A' = A'(1) = | P(g)D'(g)dg (3.3)

represents the average the DY(g) over one jump. At this place Ivanov introduces the prob-
ability wy(t) of making N jumps by a molecule in the time interval (0, ¢) and as a result

P(g™'go, t—1g) = 'NZO Wy -no{t—=10)P(8 " g9, N—No). (3.6)

Without any difficulties using (3.6), (3.4) and (2.7) we are able to establish the following
relation between C(¢) and A

@

C()) = Y, wa(® [47" (3.7

N=0

and because simultaneously (2.10) holds true, we can write
B' = f(4". (3.9)

Expanding e as a function of 4’ into a Taylor series the simple relation between
the function f(x) and the probability wy(¢) may be obtained

! dN Jf(x)t
WN(l) = ﬁ W e . (39)

Now, for example, the function f(x) = (=1-4x) t! is chosen, where the constant ©
is found to be the correlation time. In this situation we have for wy(?) a Poisson decay and
B' = (—FE'4+ 4" 7! which corresponds to the case of Ivanov. From the above statements
most important is the fact that different possible functions f(x) determine different kinds
of rotational motion. Let us study the symmetry problem. Here the symmetry is included
in the A" matrix and from (3.3) one can easily find for 4" relations like (2.12), (2.14) and
(2.16). Much more symmetry may appear if the additional condition P(g) = P(g™")
exists. Now, as was pointed out by Ivanov 4’ is a Hermitian matrix (see (3.5)) and C'(¢) is
also a Hermitian matrix (see 3.7)).

Finally let us look at diffusional rotation, which becomes possible after taking into
account Ivanov’s definition of diffusional rotation. This deflnition demands P(g)
different from zero only near the unity of the OF group. Owing to this, after expanding
D'(g) as a function of Lie parameters «,, a,, a; in a Taylor series and terminating this
series, we have

A' = EV+1; OI P(Q)ay(g)dg + 1yl OJ P()ay(g)n(g)dg (3.10)
=g i3

Fabt
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where I,', are infinitesimal operators for the D'(g) representation. So the tensors which
describe diffusional motion are given by

ag = 0§+ P(g)ag(g)dg (3.11)
byy = | P(e)u(g)n(8)ds. (3.12)

In the case when P(g) = P(g~") the first of them disappears because P(g) ay(g) from
(3.11) is odd as a Lie parameter function. Due to the relation (see Gelfand [7])

DL DY (g™") = V(g™ NIY

where V(g) is the OF group irreducible representation acting in the three-dimensional real
vector space, the molecular symmetry and (2.14), (3.7), (3.8) lead to the formulae

bgy = Vagd)Vyy(8)bgryr (314

where s belongs to the molecular symmetry group G,. For a general decay wy(¢) the tensors
ag and by, cannot be identified with diffusion tensors from the rotational diffusion equa-
tion as B' should depend linearly on the latter. However, if wy(?) is a Poisson decay B'
depends linearly on 4’ and eventually on a, and bg,, too. So a, and by, are the diffusion
tensors.

4. Molecular reorientation on a point group

In solids, especially in molecular crystals, a great jump molecular reorientation very
often exists. In the set of all possible reorientations creates a point group G and the
process is uniform in time as well as on the group G, then by analogy to (2.6) we can
write

Dim I
B DimTI 3
P(g g 1) = N Z Z Cornl DT w81 '8 (4.1)
r mup=1 -

where g;, € G and TI',,(g,) describe the matrix elements of irreducible, nonequivalent
and unitary representations of this group. Discussing once again the initial condition
P(g7 g, 0) = &, and the condition P(g; 'g;, ©0) = P,, where P, is the probability of a g,
orientation, and using the C. K. S. equation we obtain expressions like (2.8), (2.9) and
(2.10) if C'(t) and C.(?) are replaced by C'(¢) and C7,(¢) respectively. Moreover, as a con-
sequence of time and group uniformity of P(g; 'g,, t) we get

i
= C(c0) 4.2)

where I'; denotes a trivial representation and P, is automatically constant over the group G.
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5. Application in the dielectric relaxation theory

As it was shown by Glarum [9] and Cole [10], if correlations between dipole moments
of the different molecules are neglected?, the correlation function @(¢) is given by

_ <u() - 10y
<a(0) - u(0)>
At present it is very useful to replace in the scalar product u(r) + u#(0) the traditional real

coordinates which transform under the representation J(g) (see preceding page) by
coordinates proper for the D(g) representation. Hence

()

1 -
(1) = 2 {n(Dpn(0)) =

1 1 _ —

=z [ Dy (8) Do (80) 53 P& ™" 805 D)lgdg0 " Mty (.1
0‘:"3 O+3

Hete p, are given in the proper molecular frame for the representation D!(g). Putting
(2.6) into (5.1) we find

1 i
¢(t) = IF Cim(t)um:un' (52)

Generally if the process is uniform in time (2.11) leads to &(¢) = @6 Moreover, in
the case of C, with # == 2 or a higher molecular symmetry, a local (molecular) frame can
be established so that the z-axis lies along the molecular dipole moment g. Thus

&(1) = Coo(t) (5.3)

and, because the D!(g) matrices, as the representation of C, with #» > 2 or a higher point
group, have precisely in their centres the trivial representation I'y, (2.14) gives us

B(t) = Clo() = e (5.4

where 1 is a real, positive number. The same result may be obtained for a reorientation
over a point group. Consequently in both discussed cases the dielectric relaxation has
a Debye character. Summing up, if the molecular reorientation is time and group uniform,
intermolecular correlations are negligible in the meaning given earlier and molecular
symmetry is C, with # >> 2 or higher, then the Cole-Cole diagram must be a semi-circle.

Good examples for this rule are CgHsX type liquids with X = NO,, F, CL, Br, I [11].
It is worth noting that for C¢HsNO, very strong dipol-dipol interactions [12], [13], [14]
are observed, however they do not disturb the discussed rule. Also many solids hold this
rule, here a good example is z-butyl chloride [15]. On the other hand, some liquids con-

! They are negligible not only if they do not affect @(¢) but also if they change @(t) by some constant
rate.
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taining very symmetric molecules like CCl3Br or CCl,Br, [16] break this rule. This sug-
gests that either the intermolecular correlations are not negligible or molecular reorienta-
tion is not time uniform. The influence on Cole-Cole diagrams of a time nonuniform
diffusional motion with a stochastically time-dependent diffusion coefficient was investi-
gated by Ullman [17]. His results are potentially adequate for the interpretation of the
experimental Cole-Cole diagrams in both CCl3Br and CCl,Br, cases.

6. Application to dipole nuclear relaxation in liquids

We are now going to calculate the nuclear relaxation times 7'; and T, for molecules
containing N magnetically equivalent like I spins caused by dipole interaction and non-
diffusional molecular rotation. After some modifications, the calculation scheme given by
Huntress [3] may be used and for a resonance frequency w

1 6(I+1)I hz s 5 —
o ; NS Fo+ S FatT0 | [Cpg®)] (6.1)
lJ

l>]

1 _ed+1I hoy* nGDy i
—_——= DpON(FC 1 4FS C T 6.2
T1 5N rie] M2 p712,q( Zw) [ ( )] ( )
i>j
Here ry; is the distance between i-th and j-th spins, F¢ describes a cosine Fourier transform
at pomt x, the sums over p and ¢ cover the set of numbers 0, +1, +£2 and

sy = Xz caizm, mynly S, (6.3)
m+n=p
mun=0,11

In the last expression C(112]m, n) are Clebsch-Gordan coefficients and 7% depends
on the Cartesian coordinates X, X5, X§ of the vector r;; in some molecular frame,
hence we have

@) —i (i) @ij) 1
nyl = —= (X7 X37) —
V2 ij
X(3ij)

Fij

ng? = 64

Speaking more precisely (6.3) is a second rank spherical tensor seperated from the
tensor product of (6.4) with itself. The relaxation times T; and T, given by (6.1) and (6.2)
in the case of diffusional reorientation and extremal narrowing are completely equivalent
to those of Huntress [3]. Also from (6.1) and (6.2) we have secen how the relaxation times
depend on correlation functions Cj’q(r) and on the spin system geometrical structure. How-
ever, these dependencies are very complicated and contrary to the dielectric relaxation
problem we have not reached any general conclusions.
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7. Conclusions

In this paper we have shown that the best starting point for theoretical investigations
of different Markoff types of molecular reotientation is the C. K. S. equation. Using it,
after some calculations, the whole problem was reduced to the discussion of the non-
unitary representation of the real number group (§§ 2, 3). Also the influence of molecular
symmetry on this reorientation was explained. Up to now this has only been done for
diffusional reorientation, where the diffusion tensor symmetry was taken under consider-
ation. The theory presented here is more general than that of Ivanov and the latter may be
obtained as a special case. This same remark is valid for all applications where Ivanov’s
theory may be used. Rather special and important, as we suppose, for the interpretation
of Cole-Cole diagrams, appears the symmetry rule given in § 5. In the case of diffusional
reorientation in liquids this is a rather evident consequence of the results of Steele [5] or
Favro [4]. In spite of this up to now we have not found any formulation of the discussed
rule. Contrary to the symmetry rule, the applications of expressions (6.1) and (6.2) for
nuclear relaxation are limited in practice doing to their complicated structure.
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