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INVARIANT PHENOMENOLOGICAL THEORY OF THE
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The dispersion relations for the spin waves were derived, applying the classical pheno-
menological theory of spin waves to the case of uniaxial ferromagnetic substance of flat
lamellar domain structure. Thus obtained results coincide with the ones obtained with the
help of the formalism of approximate second quantization.

1. Introduction

The aim of the work is to determine the influence of ferromagnetic domain structure
on the excitation spectrum, using the classical phenomenological theory of spin waves.
This theory which is well developed for single-domain ferromagnetic substances [1, 2]
requires that certain favoured coordinate systems are chosen and the crystal symmetry is
specified. Invariant theories of the homogeneous and inhomogeneous precession of the
magnetization density vector which were developed in papers [3, 4] still do not take
into account the existence of the domain structure. On the other hand the influence of
the domain structure on the spin waves energy has been treated in many papers, e. g.
[5-9], using the method of approximate second quantization.

In this work it is shown that the majority of results (and first of all, the character of
the dispersion relations) obtained with the method of the second quantization can be
derived on the basis of the classical spin waves theory.

The underlying assumption is made that the magnetic energy of the crystal can be
expressed in terms of the magnetization density vectors and their derivatives with respect
to the space coordinates. The exchange energy, the energy of anisotropy and that of crystal
in the external homogeneous magnetic field were taken into account. Energy of demagneti-
zation was neglected. The conditions for the minimum of magnetic energy are given by
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the set of Euler-Lagrange equations. The solution of equations with the additional require-
ments of periodicity determines the domain structure and enables one to find the local
effective field [11]. In the ground state, the magnetization density vectors are parallel to
the direction of the local effective field. Excitations (precession of the magnetization
density vector around the position of equilibrium) were described with the help of classical
equation of motion, neglecting the attenuation. Calculations were carried out taking into
account first terms of the Taylor expansion.

2. General assumptions

It is assumed that the magnetic energy F of the ferromagnetic substance is given by
the expression:

F = ; fiM; M, }dx )

where f{...} is the energy density, V-crystal volume, M, = M,(x)— vector of the magnetiza-
oM,
tion density, M, ,= -é;C—“ (o, 4, ..., = 1,2, 3). All through the paper the convention
i
of summation over the vector indices o, f, u is applied. According to [10, 11] the local
effective field is given by the formula:

SF o 0

Hfi = - — = - = . 2
* M, oM, 0x, oM, @
The necessary condition for the functional minimum (1) with the side condition:
M (x)M,(x) = M 3
is, that the Euler-Lagrange equation is satisfied:
i M 4
oM, ¢
or
HY = 2y,Mo, &)

where A = A(x), M, = M, (x) = y(x) M,. Unit vector oriented along the direction of the
magnetization density vector at the point x is denoted by y,(x). The additional periodicity
condition is imposed on function y,(x) in the form:

V(X +4) = 7,(%)- (6)

In the case, when vectors M, undergo precession around the position of equilibrium
(expressed by condition (4)) the following denotation is introduced:

Ma =2 Ma;(x» t) = ya(x)M0+ma(x: t), (7)
when
'y(z(x)ma(x: t) = 0. (8)
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In this case the local effective field is a function of spatial variables x and of time ¢. In the
first approximation of Taylor’s expansion (linear terms in m,, m, ,) the effective field
can be expressed in the following way:

H(x, ) = Ap,Mo+P*my+Riimy ., 9)
where
2
pP¥ = — 9T
OM,0Mp |y, =00
62
R = . Y. . (10)
OM, ,OMy , (v, =ve.oMo
Let us introduce denotation
h, = h(x, 1) = P“”ml,+RZ€mﬁ,uv, (11)
then
H(x, 1) = Ay,Mo+h,. (12)

So far, the dependence of the energy density f{...} on vectors M,, M,, was not given.
Taking into account the exchange energy, energy of anisotropy and Zeeman’s energy
this dependence for the uniaxial ferromagnetic substances will have the form

fAM; M, ,} = APMM;+BEM, M, ,—HIM,. 13)

Assuming that the axis x5 is the magnetic easy axis of uniaxial ferromagnetic substance
one can define tensors 4*, B, in the following way:

A" = = 1 K10,30p3; B = 3 Cu0upyy (14

In order to be able to solve the Euler-Lagrange equations one has to specify the type
of the observed domain structure in the ferromagnetic substance. Let us assume a flat la-
mellar structure of Shirobokov type [12]. For this type of structure vectors M, = y, M,
remain in the plane (x,0x;) and their rotation takes place around axis x;. Let us denote
by ¢ = ¢(x,) the angle between the vector M, and the magnetic easy axis x;. Then

74%) = 7x1) = (0,72, 73); 7y, =sing; y; = cos ¢,
Px;+4) = p(x)+7. 5)

Solution of the Euler-Lagrange equations for this type of the domain structure has been
discussed in details in papers [12-15] and in the case of H? = 0 has the form:

¥3 = cos @(Xy) = sn gxy, Y, = sin @lx;) = cn gx; (16)

where

q=k"[—. , an
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Modulus of the eliptical integral k appearing in (17) is given by the relation:
4 /Z
Kk)y=—_[—.
®=3%V7e, (1
In (17) the complete eliptical integral of the first order is denoted by K(k) and by A — the

width of domain. Function 4 = A(x,) defined by formula (4) and (5), in the discussed case
has the form:

A = Mxy) = K2 cos? p—k2) = K;(2 sn? gx, —k2). (19)
Moreover
. dp\* K
2 _ 1 -2 2
@’ = (dx1> = c. (k™% —sn” gx,). (20)

3. Equation of motion
Precession of the magnetization density vector is given by the equation:

oM,

. ef
T St Mo (21)

where &4, is the Levi-Civila tensor, g-— gyromagnetic coefficient. Considering (7), (9),
(11) and (12) and taking into account the linear terms in m,, m,, one gets:

dm

- g— ! _d'f = Mosaﬁo('l'yﬂmo' + Pﬁgmeytf + Rﬁgme,uv%)' (22)
Let us make Fourier transformation of vector m, components:
m, = | do | dkm,e ™+ (23)
where
ma = mrz(xl; K, CO), K = (03 k29 kS)’ @ =S (Oa x2’ xs)- (24)

Substituting (23) into (22) and taking into account (13)-(16) one gets the set of
equations: ‘
- i(,Og_ lﬁ/ll +M0’}’3(A«+ C_I-Kz)r’;lz —MO'}’Z(A'-I- CJ_KZ);h3 +
d*m, d%s)

dx? T4 dx?

d my
2
dxi
o
d“my
—
dx7

1 ~
+ EKﬂ’zms = M,C, (Vs
M0y3(}L+Cl1c2)fnl+iwg_1ﬁ12 = Myy3C;

Mo')’s(;H‘C_L’Cz)’;H —iwg™'my = Mqy,C, (25)

In (25) a denotation Cix* = C,k3+C3k5 is used. Because of the condition (8) not all
components 51“ in (25) are linearly independent. In order to eliminate one of the com-
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ponents m, let us shift to the local coordinates system, for which axis x5 is parallel to the
unit vector y,. With this aim let us rotate m, around axis x,
my = Tymy. (26)

Because of (15) and (16) matrix T,; has the form

1 00 1 0 0
Ty = Typ(x1) = |0 73—y} =(0 sngx,; —cngx,]. 27)
0 y2 73 0 cngx, sngx,

Condition (8) is equivalent to the condition m3 = 0 in the local coordinates system,
Equations of motion (25) in the local coordinate system have the form:

& CiH{a+C k*ym) —i my = 0
—_— — K Imi—i my =
dxi ! : = 1 gM()Cl 2
d’my - ' e
dxzz —-Ci i+ CJ_K2+K1Y§_C1¢2}m2+1gT/I“C‘ my = 0. (28)
1 0Cy

°

Substituting into (28) relations (16), (19) and (20) and changing variables:

Ky

y=qx; =k} C—IXI, (29)
one gets:
dzr;l’l 2 2 2r—1 2 ~ 7 2yt
07 —{2k* sn® y+k*Ky 'C k*—1}m| —iQm) =
d*m, 2 .2 2 -1 2 2y 4 2™
e —{2k* sn* y+ k*K;'C 1k® — 1+ k3ymy+iQm) = 0 30)
where
k2
- o; k2=1—k% (31)
gMoK,

Due to the fact that both equations of set (30) have analogical form their solutions can
differ only by the constant factor i. e.

my = S1g(y);  my = S»80)). (32)
After substitution of (32) into (30) each equation of set (30) transforms into the form
of Lame equation

d’g 2 .2 :
d_yi —{2k" sn* y+4y}g =0 (33)
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where parameter 4, in equation (33) is related to S; and S, in the following way:
S
Ay = K*K{C kP —1+i20Q
Sy
21 2 2 .S
A0=kK1 CJ.K —1+k0—ls_g. (34)
2

4. Evaluation of the dispersion relations

Expressions (34) represent a set of equations with respect to S; and S,. This set can
have non-trivial solutions only when its determinant is equal zero. Such condition allows
one to determine Q:

Q = V(KK 'C 6?1 Ag) (K[ 'C 1 — 1+ k3~ Ao) . (33)

In order to determine parameter 4, appearing in (35) it is necessary to know the
solution of Lame equation (33). Solution of this equation has the form [16-181:

9 {(}’:‘:)’1) 2%}
g(y) = e ~ exp {£YZ(y1)}, (36)
94
{ae}
where
Z E E (37
) = EQyp)— k— Yis

while 9,, 9, are the Weierstrasse theta functions. Symbols E(y,), E denote incomplete
and complete eliptical integrals of the second kind and K stands for the complete eliptical
integral of the first kind.

Parameter A, can be expressed in terms of y; as follows:

Ag = —1 —k%?cn?y,. (3%)
Substituting (38) into (35) one gets
Q = JUPKTIC )P+ k2 en® y,) (K2 + k*K; 'C k> +k* en? yy) . (39)

Only these solutions of equation (33) in the form of (36) have physical sense, which are the
continuous and enique functions of variable y. Such conditions determine the permissible
values of parameter y,. Let parameter y, be expressed as follows:

y1 = u+tiv. (40)
A condition for solution (36) to be limited is:
Re Z(u--iv) = 0. (41)
Condition (41) is satisfied for:
u=nKyn=01,2, .. (42)
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When u takes values given in (42), parameter 4, is a function of the imaginary part
v of parameter y;. This dependence is different for the even and-odd values of # in (42).
Let us consider the case:
A)  u = 2nk;

In this case one gets:

2
2. _ 2 _ El__ﬁ(”: ko)

cn” y, = nc (v, ko) = 1 on (0, ko) 43)

N[/ an (v, ko)>( e an (v, ko)

Q, —[<k Ki'C e 4417 — oy \FETCo 1402 = e
(44)

9 v) =

B {(y+w)2~K— (kg o Zok N
840 = e — <2 {ly [Cn (v, ko) ok 4w o)]} . (45)

In the real situation [12-15] the modulus of the eliptical integral k is very close to
unity (k= 1, ko &~ 0, sn(v, ko) — snv). Taking into account this fact and the relation
(29) one gets the approximate expression for Q,, g,(»)

Q, = KT (Ck} 4+ Cok2 + C kD) +1, (46)

N v
191 {(xl \/Kl,/Cl +lU) '2‘12}
ga(%y) = ——— Y exp (ikx,), C2))
3 'K,/C
4 {x1 VEKi/Cy 5 K}
where the component k, of the wave vector is defined as:

K1 sn(v, ko) Ky
C1 ca (v, ko) C,

k1=

tg v. (48)

‘With the accuracy to the first order with respect to k, function g4(x;) can be written
in the form:

galxy) = {sn (k™! \/C—l/K;; Xy)—i \/IC—1/—K: ki} exp (ik;x,). (49)
Let us now consider the case

B) u=(n+1)k

In this case one has

2
K
A CL NN SRCPRRY (50)

2
en®y, = —k2—
2 ® dn? (v, ko) .
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Qp = V(KK 1C 1 = k2K2 sd? (v, ko)) (KPKT 'C k2 + k2 —K2kZ a2 (v, ko)), (51)

T

9y {(}/ +iv) 2K

yn
)
{38

For the modulus value k — 1 one gets the approximate expressions:

80) = — exp {iy [ké 4 (0, ko) = 52 —Z(0, ko)]}. 52)

Q; = K{'C «*

g5(y) = et cn y. (53)

5. Concluding remarks

The classical spin wave theory was applied to the case of ferromagnetic substances
of flat lamellar domain structure. The dependence of the inhomogencous precession
frequency of magnetization density vector on the wave vector was derived. The obtained
results coincide with the results obtained with the help of the second quantization method
[6, 7, 9] in the lowest approximation of the Holstein-Primakoff representation i. e.
neglecting the spin waves interaction.
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