Vol. A44 (1973) ACTA PHYSICA POLONICA No 3

APPLICATION OF THE ORTHOGONAL OPERATOR EXPANSION
METHOD TO THE ZERO-FREQUENCY ANOMALY OF THE
CORRELATION FUNCTIONS

By W. BORGIEL AND J. CZAKON
Institute of Physics, Silesian University, Katowice*
(Received April 6, 1972; Revised paper received February 12, 1973)

The problem of the zero-frequency anomaly is studied by using the orthogonal operator
expansion method and superoperators acting in the operator space. The eigen operators
of the Hermitian superoperator H* corresponding to the Hamiltonian H are chosen as the
basis in the operator space. A useful formal method for testing the zero-frequency anomaly
constants is given. As an application of this method the zero-frequency anomaly of the
transverse and longitudinal Heisenberg correlation functions are discussed.

1. Introduction

We shall give here a brief mathematical background to the method of orthogonal

operator expansion. Let H be a linear, finite-dimensional space which consists of the
linear operators 4, B, C, ...

These operators A, B, C, ... act on the finite-dimensional Hilbert space H of the
states of the physical system. Next we define the bracket (..., ...) which is a function

of the tensor product H ® H in the complex plane. We shall assume that it has the usual

properties of a scalar product in 4 space. Several different realizations of the above
function will be given in Section 2.

Let us introduce in H the set of operators {O;}, which satisfy the relations
(0, 0p)) = by (1.1
This set {O;} is called complete, if
(A, A) = Z (A, Oj) (Oj: A)’ (12)
J
holds for every operator of ﬁ . If a set of operators is complete, any operator 4 of A can

be expanded as
A = Z a;'ioj’ (1'3)
J
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where a}‘ are in general complex numbers given by the formula
al = (4, 0)). 1.4

For details, see e. g. [4] and [5].
Let us define in H linear superoperators 4, B, C, ... By a superoperator we mean an

entity which when acting on a operator of H turns it into another operator,
We have

‘:loi = Z [;l]ijoja (1.5)
[4]; = (40, 0)). (1.6)

The product of 4 and B, denoted by 4B, is also a superoperator C. The matrix element
of C can be written in the form

[e]ij = %[Z]ik[B]kj' (L.7)

Let us distinguish a special set of linea1 superoperators denoted by A%, B*, C%, ... and
defined by the relation

AT =[4,..]-. (1.3)
The Heisenberg representation of A(z) for any complex parameter z is defined as
A(z) = ¢874(0) = e A(0)e™E, (L.9)

where H is the Hamiltonian of the physical system.

In Section 2 we discuss the solution of the eigen-problem, the Hermitian super-
operator corresponding to the Hamiltonian, and a method of obtaining the complete
operator basis in H.

Using the results of Section 2, the problem of the zero-frequency anomaly for the
spin correlation functions of the Heisenberg ferromagnet is discussed in Section 3.

2. The eigen-problem of the Hamiltonian superoperator i

We consider a finite-dimensional linear space H and determine the subspace invariant
under the action of the superoperator H* which corresponds to the Hamiltonian H of the
physical system. This is equivalent to solving the system of eigen-equations [1, 2, 7, 9]

I;ixoi = a)iOi. (2‘1)

In general there is degeneracy in the equations (2.1). To the eigen-value w; = 0 belong
all the constants of motion and functions of those and to w; #0 belong also the operators
obtained by multiplication to the right or left of O; by arbitrary functions of the constants
of motion. The solutions of Eq. (2.1) have a simple physical interpretation which will be
given below.
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Let {P}} be a complete set-of Hermitian superoperators acting in A space which
commute with one another and with the superoperator H*

[A5P]- =0, i=1,2 ..,s, (2.2)

[P,P]-=0, ij=12,..,s (2.3)

It is always possible to find such set H*, Py, ..., P,. The basis operators in H are then
determined by the solutions of the eigen-equations

yx
HOuppy,pry = 000, py. by 24
7 ’
P iOwk,Pu,---,P’s S8 iowk,Pu,n-,P'S, 2.5
where
(Ou by Oty eceyprr ) = ey Op P11y vv Oy pre (2.6)

"From (2.4) and from H = H* one obtains the eigen-equations for the Hermitian conjugate
operators with the eigen-values - w, '

X+ + i
HOy, p,...pr, = — 00 pr 1o Py (2.7)

Using the equations (2.4) and (2.7) one obtains the relation

Hx[om,-,P’l,---,P's’ Oa-:j,P”h-n,P”s]a = (wi"‘wj) [Owi,P’i,---,P’s’ Oa)j,P”x,-n‘,P”s]a’ (2.8)
where '

[4,B], = AB+aBd, o =0, +1. (2.9)

In a particular case w; = w; we conclude from (2.8) that

n i Py P 5
[Owi,P'1,-~-,P’s’ Owi,P"l,---,P”s]u = {Z P'1,---,P's,lf”1,---,P”sOO,P"’h---,P’”s’ (210)
§ 0

where on the right-hand side of Eq. (2.10) we have a linear combination of all the con-
stants of motion. The equation (2.10) is a generalization of the well-known Bose and Fermi
commutation relations. To the eigenvalue @ = 0 belong all the operators which are diagonal
in the energy representation (all constants of motion), and to the eigenvalues @ 5 0 belong

all the operators which have no diagonal part in the energy representation.
For any linear operator acting in the H space one can write

A A
A4 = Z {aO,P'1,---,P's00,P’1,---,P’s +Z awi,P'l,---,P'sowi,P’l,'--,P’s}’ (211)
{P'i} i
where
ag’Pzp...,P,s = (A, OO,P/I’___,PIS)’ (2.12)

ag,-,P'l,---,P's = (4, Op pr ) (2.13)
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The first term on the right-hand side of equation (2.11) represents the diagonal part
of A and the second one the off-diagonal part of 4 in the energy representation. Let
H,P,, ..., P, be a complete set of commuting observables in H space. The eigen-equations
for these operators can be written as

Hlska Pl]; seey i);> = sklsks Plla 9 TJ;>3 (214)
Pjiey, P, ... B> = Plig, Pl, ..., PO, (2.15)

fori=12,..,58
In H-space the set H, Py, ..., P; has the following counterparts

H— B, P,- P} (2.16)
for i = 1, 2, ..., s. The superoperators H* and P also commute with one another. If the
set A%, P5, ... P" is complete set of commuting Hermitian superoperators then the solu-
tions of (2.4) and (2.5) have the form

: U A AR A 4 2.17)

The operators (2.17) are all eigen-operz;.tors with the eigenvalues
P = PV P”
©; = &8 (2.18)

The results (2:18) can be obtained from (2.17) and by makmg use ‘of the definitions
B*, P¥, ..., P¥. The operators (2.17) correspond to the O, p,, . One can see that
Owi,,,‘ ... Py 8Te transition operators between quantum- states, where w;, Py, ..., Py are
relevant differences of quantum numbers.

Let us consider the retarded Green function [8],

A(t)|BY = —iO(t) {[A(), B]-, (2.19
where
e PH 1

>y =T a0a)b = T = =05
oy =Tr(e),  e= = B kT

(2.20)

and @ is the Heaviside step function equal to 1 for ¢ > 0 and to 0 for < 0. The equation
of motion for the Fourier transform of the function is

1 o
EAIBY)e = 5 <[4, B]->+<{[4, H]-|B))E 2:21)

The Green function {4 |BYg can be related back to the time-dependent correlation func-
tion {BA(t)) via the spectral theorem

<<A]B>>E+t0+ (KAIB}>g-i0+ ¢ P dE,

s (2.22)

(BA(D)> = Cypti J.

-
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where
Cap=Q ™1 Y e P (n|d|m) (m|B|n), (2.23)
k m,n

for details see references [3] and [6].

By taking into account the relations (2.11), (2.12) and (2.13) and the definition of the
scalar product, the formula (2.23) can be written in the form

Can = 2% [ 00p1p) Oy BY) 0,00y ). (224)
P} {P

The scalar product (..., ...) may be defined in various ways. We shall use a definition
which has the simple physical interpretation as the quantum statistical average in the
equilibrium state. We have

(4,B), = Tr (¢[4,B"]), a=0 or 1. (2.25)

With this scalar product the superoperator A* is Hermitian in H. Next we use (2.25) with
a = 0. Then, from (2.24) one obtains

CAB = {PZ,} <AO(.),:p'1,...,p's> <00,P'1,---,P’5B>’ (2'26)

or, in the particular case when 4 = B+,

Casr = 3 (K403 p,.p P @27

The equation (2.26) can be written in another form. We can always include in the
basis set the identity operator which will belong to w = 0. Taking this into account we
have

Cup =AY (B> + {;’} <A0(IP'1,--.,P'S> 0o pis...p,. B, (2.28)

where the sum extends over all operators Oopy,..,p, €Xcept the identity operator..
A similar result was obtained by Suzuki in [6].

3. The zero-frequency anomaly for the spin pair correlation functions of the Heisenberg
ferromagnet

As we considered above, the retarded commutator Green function does not contain
complete information about the correlation functions. In general C,p is not equal to zero,’
and we have to use the formula (2.22). The problem of this anomaly was discussed in more
details in [3] and [6]. Next we shall discuss this anomaly for the spin pair correlation
functions of the Heisenberg ferromagnet.

The Hamiltonian of the system is given by

1
H = —,S;— N Z J(Sg82,+S525%) (3.1)

q



378

where 73, J, are the spatial Fourier components of the spin operators SF and the
exchange integral J,,, and w, represents the external magnetic field. The exact calculation
of C 5 according to (2.26) is more complicated because we do not know the eigen-opera-
tors of H* for w = 0. We can only calculate C zin the same approximation as we have
used in the Green function problem.

The familiar methods often applied to the Heisenberg ferromagnet are actually equxv-
alent to seeking the solutions of the equation

HxSk = Cl)ks;, (3.2)
where
(H*S{, S{)a _ <LLH, 5¢1-, S=udw>
(SI-:s Sl-:)a <[Sl-:: S:k]a>

In the simplest approximation @, can be written using the scalar product with & = 0.
Then the equation (3.3) becomes

<Sk qS3 2 ,
wp = wo+ Z(J ) e (3.4

wy =

33)

If we apply to the above formula the Tiablikov decoupling [11] procedure we obtain
wp = wo+20(Jy—Jp), o= (5% (3.5)

If we use the Callen [10], {41 procedure we have

0 = 05+20(Jg—=T )+ — Z(J —Ji_) {STST . (3.6)

Detailed cons1derati01is are given in[1],[4] and [12]. All simple approximations commonly
used to the Heisenberg ferromagnet espacially in the low temperature region can be obtained
in the form of approximate solutions of Eq. (3.2). In this approx1mat10n Sy are the eigen-
operators of H* with w; # 0. It was emphasized in Section 2 that the eigen-operators
with o # 0 are orthogonal to the eigen-operators Og p.r. . p,. Hence,

(S0 p,.p> = (SF, Og ... ,P>—0 37

Then from . (2.27) we see that Cg+_, - is approximately equal to zero. Let us con-
sider the p031b111tles of calculatmg these anomaly constants C, exactly. If the Heisen-
berg ferromagnet has translational symmetry we can probably assume that the operators
Ogpy, .. psdo not prefer any 1attlce 51te which 1mp11es

(Sk s OO,P’;,---,P’S) = <S;OO,P’1,---,P’S> ~ 5k,o- (3-8)

The longitudinal spin pair correlation function can be discussed in much the same
way, i. e.

(S 00,01 p) = CSKOG P pr? ~ Oior (3.9)
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Then, from (3.8) and (3.9) it follows that Cy +,_, - and Cj,s,_,s should be exactly equal to
zero (for k # 0). More complicated spin correlation functions can also be treated by the
above method. The formula (2.27) should prove an efficient tool in examining the zero-
frequency anomaly of correlation functions.

4. Summary

Let us briefly summarize our result. In Section 2 we have presented a method for
calculating the zero-frequency anomaly constants Cz of correlation functions. This method
is a simple generalization of that given by Suzuki [6]. In our formula various scalar product
can be used. In Section 3 we have calculated the constant C,p for the transverse pair correla-
tion functions of the Heisenberg ferromagnet. By pérforming the calculations in the same
approximations as the ones used in the Green functions we have shown that Cors_- = 0.
The same result seems to hold rigorously for C +;_, - and Cs,_,s. The method can be
also wsed for more complicated cases.

The authors would like to express their sincere thanks to Dr A. Pawlikowski for
valuable discussions and to Professor W. J. Zigtek for reading and correcting the manu-

script.
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