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GREEN’S FUNCTION ANALYSIS OF THE VIBRATIONS
OF DIBORANE
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Green’s function analysis of substituted and perturbed molecules was applied to the
vibrational study of diborane. A new set of isotopic rules has been formulated. The potential
energy constants, mean amplitudes of vibration, rotational distortion constants and the
Coriolis coupling constants have been calculated and found to be in agreement with the
experimental values.

1. Introduction

Diborane has a peculiar bridged hydrogen structure and is one of the simplest electron-
deficient molecules [1]. Because of these unique features, the calculation of the normal
vibrations and the potential function is important for a better understanding of its valence
structure. The presence of abundant varieties of isotopic species makes it ideal for the
application of Green’s function analysis [2-5], a method which has been found to be of
great use in uniquely fixing the molecular force fields and also to be suitable in obtaining
isotopic rules without recourse to the force fields.

The Raman and infrared spectra of diborane and its isotopes have been studied by
a large number of workers [6-8]. Recent studies of polarized infrared spectra of single
crystals of diborane by Freund and Halford [9] have confirmed the earlier vibrational
assignments. Normal coordinate analyses of diborane have been carried out by Bell and
Languet-Higgins [10], Venkateswarlu and Radhakrishnan [11] and Sverdlov and Zaitseva
[12] using GVFF, Ogawa and Miyazawa [13] using UBFF, and by Adams and Churchill’
[14] using SVFF. Ogawa and Miyazawa concluded that the UBFF does not adequately
represent the molecular force field for diborane and for compounds having a similar bridged
structure. Recently, a complete infrared high resolution spectrum of diborane, together
with its structure obtained in such a study, and accompanied by rotational distortion
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constants, was reported by Lafferty et al. [15]. Electron diffraction results of Bartell and
Carroll [16] have also been confirmed by these authors.

The present paper deals with the formulation of isotopic rules, the evaluation of mole-
cular constants like the potential energy constants, mean amplitudes of vibration, rota-
tional distortion constants and the Coriolis coupling constants of X,Y, bridged-type
molecules, using Green’s function analysis.

2. Isotopic rules for X,Ys — X5Ys molecules

Nonplanar bridged X,Y, type molecules belong to D,, point group having eighteen
distinct normal vibrational modes which fall into the irreducible representations 44,
+1A4,+2B1;+3B,+2B,,+2B,,+1B3,+3B;,.

The isotopic rules for the different vibrational species were derived by solving the
secular determinant [2]

62G(w?)+1] = 0 )

where G(w?) is the Green’s function of the unperturbed molecule, w the frequency of
vibration, I the identity matrix and

(mx—my)
g = ——"

my

m is the mass of the substituted atom and my is the mass of the original atom. The Green’s
function for the unperturbed molecule is related to the matrix of transformation / between
the normal and mass-weighted Cartesian coordinates. To obtain /, a set of othonormalized
Cartesian symmetry coordinates, S, which includes rotations and translations, was con-
structed. A linear combination of these symmetry coordinates with proper “mixing para-
meters” will yield a set of normal coordinates. The main difficulty lies in the determina-
tion of the proper combination of symmetry coordinates with the suitable mixing para-
meters to represent the actual normal modes of vibration in a single species. For example
in the A4, species there are four symmetry coordinates and using them we can write a number
of sets of normal coordinates. But only one of them will be the “proper and true” set
and will give the real solution for this species. This set is as follows:

Q) = (Si+eS5) Vite?
Q, = (S,+dS,) V1+d*
05 = (S5—0Sy) V1+¢c*
0, = (S4—dS,) V1+d2. )

Even here ¢ and d cannot be solved for independently. Hence as a first approximation
one of the values was chosen as unity. Such an approximation gave a very good fit for the
various equations involving the sum rule, and the sum of the 2x 2 product rule and 3 x 3
product rule (Egs (A.2)~(A.4)). In other words these equations gave consistent values for the
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mixing parameters. This consistency was observed in both the By, and Bs, species, where
there are more than two normal modes.
The normal coordinates for the other species were chosen as follows:

A, species:
05 =3S;s 3)
B,, species:
Qo = (Se+eS7)/V1+e*
Q; = (S1—eSe)/V1+e* 0)
B, species:
Qs = (SsH1So)/ N 1+/%
Qo = (So—/Se)/ N 1+/*
Q0= SIO (5)
B,, species:

011 = (S1:1+851)/V1+g2
012 = (S1,~8S1)/V1+g2 ©6)
B,, species:
Q13 = (S13+hS1a)/ 14k
Q14 = (S1a—hSy3)/V1+h? @
B3, species:
Q15 = Sis (8)
B;, species:
Q16 = (S16-+kS15)/ v 1+Kk%
07 =57
Q15 = (S15~kS6)/v1+k2 ©)

where the Q and S terms represent the normal coordinates and the Cartesian symmetry
coordinates, respectively, and ¢, d, e, f, g, h and k are the corresponding mixing para-
meters of the respective species. The six translational and rotational symmetry coordi-
nates are also normal coordinates.

The frequencies of the isotopically substituted X} ¥, molecules can be obtained from
equation (1) and the perturbation associated with the six rows of the / matrix, representing
the two X atoms. The resulting determinant is a quadratic polynomial in . In the present
case equation (1) reduces to

{[e0? Gy (@D +1P - [0®G14(@) P} {[60?G (@) 112 — [e®G,s5(w?) P} x
' x { [e0*G33(0?)+112— [ Gs6(w?) 1} (10)
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after taking into consideration the fact that G,4(0?) = G4a(@?), G12(0?) = Gss(0?),
G33(0?) = Gg6(0?), G14(@?) = G41(@?), G25(0?) = Gs5x(0?), G36(0®) = Ge3(w?) and all
other G;;’s are zero. From equation (10) we get six equations which are independently equal
to zero, whose solutions give the frequencies corresponding to the species of the isotopically
substituted molecules. The isotopic rules thus obtained are given in the Appendix. The
frequencies of the corresponding unidimensional 4, and Bj, species were obtained by
mass-scaling the corresponding frequencies of the unperturbed molecules by

off = [%] ol an

Vibrational frequencies of Lord and Nielson [6], Lehman et al. [7] and Taylor and Emery
[8] and the molecular parameters of Lafferty et al. [L5] presented in Table I, were used in the
present calculations.

TABLE 1

The observed vibrational frequencies (in cm), molecular parameters and the mixing parameters of 1°B,H,s
and nBsz
Mixing parameters
Vibrational species 108, H, UB,He — —
loBsz uBzHa
|
Ay wy 2537 2524 [ c 1 1
s 2110 2104 | d 0.414530 —0.319493
s 1186 1180 ¢ —4.470116 —0.527442
w4 820 794 | 1.269203 1.558156
g | 0.896218 0.928047
Ay ws I 829 | 829 h —0.006165 —0.032067
By, s 1768 1768 k| —2464985 | 2.427116
w7 1044 1035 B-H, =1200A
By ws 2625 2612 | B-H, =1320A
o 950 950 B-B =1762A
w10 368 ' 368 ' HBH, =121°
By, 11 2640 2591 H;B Hp = 96° 12
w12 930 920 H,B H;, = 109° 12’ (calc.)
Bay w13 1920 1915
w14 977 973
By, @15 1012 1012
Bsy, W16 2528 2525
w17 1606 1602
W18 | 1181 1177 |

3. Potential energy constants

From the various isotopic rules that are given in the Appendix, the mixing parameters
were calculated and the symmetry force constant matrix was obtained from the relation [4]

F =Bt AAAB! 12)
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where A is a diagonal matrix whose elements A, are defined by
A, = 4n*ct o} 13)

Here, ¢ is the velocity of light, w, is the vibrational frequency of the k'™ mode, B is the
transformation matrix between the internal and Cartesian symmetry coordinates and 4
is the unitary matrix of the mixing parameters. The symmetry force constant elements
obtained are presented in Table II along with the relevant valence constants.

TABLE II

The symmetry force constants and the important valence constants of Diborane!

Symmetry Force constant Symmetry Force constant Valence
species values species values constants
- |
Ay F; = —3.4256 B,y Fij1= 3.7809
Fzz = 2.1978 ﬁ212= 0.9878
F; = —0.6782 Fi112 = —1.2431 |
F4, = 25853 By, Fizi3= 2.0475 fa = 3.6004
F, = 0.1245 Flaa= 0.5685 fo = 19367
Fi; = —0.4904 Fisia= 0.4096 frR= 2.5853
Fa, = 02157 Fys515= 0.2162 fa = 0.6296
F,; = —0.1868 B, Fis16= 3.6237 fo= 04831
Fy = —0.2683 By, Fy707= 1.5838 fo = 03734
Fiy = —0.3235 Fig13= 0.5811 Saa= —0.0757
Ay Fss = 04732 Fi617= 0.0873 fep= —0.0458
Blg FGG = 1.9175 F1513= 0.4185 faaz —0.1734
F,;7 = 05736 Fi7,8= —0.1309
Fs7 = —0.4183
By Fgg = 3.5714
Foo = 1.0455
Fio1o= 0.3734
Fgo = 0.4735 |
Fgio = 0.2736
Fy0= 0.6138 | |

! Bond stretching constants are expressed in mdynes/A, bending constants in mdynes Ajradian~2
and the stretch-bend interaction constants are in mdynes/radian.

4. Mean amplitudes of vibration

The mean square amplitude () matrix for the various atom pairs was obtained
from Cyvin’s relation [17],
% == LAL = BAAAB 14

where 4 is a diagonal matrix with elements

h th (hewy)

= 8%, (2KT) (15)

4
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Here & is the Planck constant, ¢ the velocity of light and T the absolute temperature.
The relevant mean vibrational amplitude values are given in Table III.

TABLE 111
Vibrational mean amplitude quantities in A
108, H, UB, H,
[ 0.0872 0.0843
o 0.1007 0.0994
OR 0.0667 0.0634

5. Rotational distortion constants

The values of the 7 elements defined by Kivelson and Wilson [18] were determined
from the values of the elements of /, and the matrix of transformation between the normal
and mass-weighted Cartesian coordinates constructed using the relation

1==584. (16)

The explicit relationship between the / elements and the © elements was determined using
the method suggested by Oka and Morino [19] and Alti ez al. [20]. The obtained values
-for the rotational distortion constants Dy, D;x and Dy are givem in Table IV.

TABLE 1V
Rotational distortion constants in cm™*
Molecule [ Dy Dy Dyg
1°B,H, 1.2478 x 10~° \ 2.3419x 10-3 5.7449 x 10-¢
1B, H, 1.0541 x 10~ 2.4290 x 10—° 7.1812%x10-¢

6. Coriolis coupling constants

The values of the Coriolis coupling constants ({) were determined form the !
matrix using the relation given by Meal and Polo [21] i. e.,

¢ = IM“]. (17)

The values of these constants for interaction of the vibrations were calculated assum-
ing the B-B axis as the axis of rotation. They are given in Table V.

7. Results and discussion

In this study, the assignment, internal coordinates and symmetry coordinates used
are identical with those of Ogawa and Miyazawa. The wg and w5 values are those of
Lehman ef al. Ttis seen from the Appendix that the isotopic rules obtained are similar to
the Teller-Redlich Product Rules and are derived without assuming any force field model.
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TABLE V
Coriolis coupling constants
¢ Elements 108, Hs ‘ UB,He
AgXBig Li1s —0.3916 | -0.3916
Cass 0.7931 0.7691
' s ~0.3916 ‘ —0.3916
{asts —0.2534 —0.3188
AyX Bsy {sa16 | 0.9246 | 0.9266
Csy1s 0.3809 0.3759
BngBZg C6,11 —02482 —06349
‘ Los12 0.4061 —0.7414
{7011 0.6381 0.2191
L7012 0.6145 0.0968
BiuyxBay L83 0.1098 0.0048
{814 —0.6974 —0.7854
os13 0.0705 0.0278
{os1a —0.4476 —0.6138
L1001 | —0.9995 —0.9999
C1o014 —0.0320 | —0.0546

The B-H, stretching force constant 3.6004 mdynes/A obtained here compares well
with the value of 3.42 mdynes/A obtained by Bell and Languet-Higgins. Adams
and Churchill obtained a value of 3.538 mdynes/A from their recent normal coordinate
treatment. The corresponding stretching force constant obtained from Badger’s rule [22]
is 3.008 mdynes/A. The value obtained-for the bridge bond stretching is 1.9367 mdynes/A..
Bell and Languet-Higgins report a value of 1.43 mdynes/A and the values obtained by
Adams and Churchill and from Badger’s rule are 1.684 mdynes/A and 1.865 mdynes/A,
respectively. The Bridge bond stretching force constant is 53 per cent of the terminal
bond stretching constant and furthermore we find, in agreement with Ogawa and Miya-
zawa and Adams and Churchill, that there is a substantial force constant corresponding to
the B-B bond stretching. The value obtained here for the BB stretching is 2.5853 mdynes/A
which compares fovourably with the value of 2.21 mdynes/A reported by Bell and Languet-
Higgins. The value obtained by Adams and Churchill is 2.511 mdynes/A. The value of the
B-B stretching force constant in B,Cl, and B,F, [23] (3.8701 and 6.6880 mdynes/A) are
consistent with the value of the bond lengths (1.702 and 1.67 A).

The value of the force constant, 2.5853 mdynes/A, in B,Hj is consistent with a bond
length of 1.762 A and this confirms the possibility of the existence of the B-B bond. The
existence of such a bond is in agreement with molecular orbital calculations, which show
significant electron density in the region which would be occupied by a B-B bond. This
can also be seen from the equality of the boron-boron distance (1.762 A) and the sum
(1. 76 A) of Pauling’s tetrahedral covalent radii [24]. The bending constants f, and fg
are found to be 0.6296 and 0.4831 mdynes A/radian® which compare well with the values
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of Adams and Churchill (0.515 and 0.336 mdynes A/radian®) respectively. Regarding
the interaction constants, the values obtained are f,, = —0.0757, f;» = —0.0458 mdyne/A
and f;, = —0.1734 mdyne/radian. All these are negative. The torsional force constant f;,
obtained here is 0.3734 mdynes/A whereas Adams and Churchill have reported a value of
0.042 mdynes/A.

The mean amplitudes of vibration calculated for 10g,1, (0p_g, = 0.0872 A, op g, =
= 0.1007 A and o5_g = 0.0607 A) compare well with the electron diffraction values of
Bartel and Carrol. (They have reported a value of 0.0734 for B-H,, 0.857 A for B~H, and
0.0608 A for B-B.) Then using the isotopic rules and treating the **B,H as the unperturbed
molecule, and 1°B,Hg as the isotopically substituted perturbed molecule, the mixing para-
meters have been calculated (Table I) and the calculations repeated for finding the mean
amplitudes of vibration, rotational distortion constants and the Coriolis coupling con-
stants. The values obtained for D; and Dy are 1.2478 x 10~Scm! and 2.3419 x 10-% cm,
which compare well with the values of Lafferty et al., reported from their high resolution
infrared study (D; = 1.21x 1075, Dg = 1.65x 105, and Dy = 1.54%x 1076, for *'B,Hs,
D; = 1.17x 1075, Dp = 1.97x10~% and Dx = 1.97x107%, all in cm~). However there
seems to be a considerable discrepancy between their Dy values and ours. Ourtvalues are
consistently higher than the reported ones.

Since the moment of inertia about the B-B axis of diborane is so much the smallest,
rotation about this axis will cause the largest Coriolis perturbation and so we have con-
sidered this axis alone. The coupling constants obtained are given in Table V. Smith and
Mills [25] reported the following three elements from their infrared study: |{s ;5| == 0.55,
|€7,12! = 0.61 and [{o 14| < 0.2, for diborane. Of these {5 14 and {1, compare well with
our values and our value for {, ;5 = —0.4476.

From Table 1, it is seen that the values of the mixing parameters of °B,Hg and
11B,H, are very nearty equal except for the values of e and h corresponding to the By,
and B,, species. Since the molecular constants are very sensitive to the mixing parameters,
the trend observed in the Coriolis coupling constants of *°B,Hs and **B,Hs involving B,
and B,, species can be studied.

In conclusion it may be pointed out that Green’s function analysis yields a complete
set of molecular constants within reasonable accuracy and that the molecular force field
for diborane and other bridged structure molecules will be well represented by the Green’s
function procedure. Application of the méthod to similar bridged structures is in progress.

One of the authors (G. S.) is grateful to the/University Grants Commission, Govern-
ment of India, New Delhi, for financial assistance in the form of a Junior Research Fel-
lowship award.

APPENDIX
Isotopic rules for X, Yg - X LYs molecules
4, species

2 2 2 2
wiza)izd)iza)iz - W1W003W
122 Wy =

(1+e)

(A.1)
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00305 +of) +olelo] +o5)] =

emyC*olwi(wi +d*wd)+ 2emyD* 0203wl +03) +
+ C2D2d202 00k + 0d) + 0ioi(0] + ©3)

C*D*d3(1+¢2)

(A.2)

coif(coiz2 + a)i; + coff) + w’zz(co‘; + a)f) + a)?cof:] =

emyC[(0? + w2) (02 + d*w3) + D*0}0}] +2emyD*] (03 + ©3) (Coi+wl)+
+ C20202] + C2D2d2[ (0} + 0} + ) + 0j(@] + 0l) + wiwl]
C?D*di(1+9)

(A.3)
2 i2 i2 2
(605} +C02 +a)3 +CO4 =S

emyC DX (@} + w32) + wj+d 0] +2emyD* [C}(w}+ wd)+ o)+ ol]+
+ C2D*dY(0} + 05+ 03+ 0F)

B C2D*d%(1+¢)
(A9)

where d2 == (my+2my), C? = (1-+¢?), D? = (1--d?) and ¢ and d are the mixing parame-
ters.
B, species

2 2 wéw3(21X+8mXR2)d§di

Wy = =—— =
S T 4elymy[myR*DS2),d% +(R+2aC, ) d3] + 2y +emyR*)d3d;

(A.5)
ok +0f =
4eTymy[{(R+2aC,))ds—e \/mxRbSy,; du} 0f+{/mxRbSy; dut
+e(R+2aC,)ds} ) +(2I g +emyRY)E2d3dY w0k + wF)
4elymy[myR?b2S2,,d2 + (R +2aC,,) d3] + (2 x + emgR*)d3d5

(A.6)

where R, a and b are respectively the X-X, X-Y; and X-Y, bond distances. Iy is the
moment of inertia along the X axis whose value = [my(R+2aC,;)*-+2myb*S 72 +mxR?2],
dy = [2Ly(Ix—2myb?S2,)112, dy = [2(Iy—4mya®S2,) 14> with Iy = [4mya®Sj,+my(R+
+2aC,5)*+mxR?(2} i.e., the moment of inertia along Y axis, Sy, and C, stand for
sin o/2 and cos «/2 and Sy, and Cj, stand for sin /2 and cos BJ2. Here « and f are
the Y, XY, and Y,X7, angles. E*> = (14¢?) and e is the mixing parameter.

B, species

2 2 2 2
2 p p  Ws05070(2emy+dy)

WEWeWig = - I t0) (A7
1
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i2 i2 i2 i2 i2 i2
Wy Wy +We o+ Wy whe =

_ ZemymyFogos+2emydi(f*wiwto + wieto) +Qemy + dDd3F [wiwd + wie?, + who?,]
F2a2d2(1+¢)

(A.8)
i2 2 i2
(DS + Cl)g + wlO =
2emymyF* (@} +5) + 2emydi [ f2 (@] + 0}o) + (@l + 0l)] +
+Qemy+d)d3F*[0f + 03+ 0]

F2did3(1+e)
(A.9)
where d? = (2my-+6my), F? = (1+12) and f is the mixing parameter.
B, species
. 3 ) 2 2
o ) R*+2I)d
w;uwllzz - 01,07, (emy vdz (A.10)

[SszmYRzasz/z +4emyIy(R+2aC,,)* +(emyR* +21;)d%]

wi121 + a’i122 =
43m¥[{\/E (R+2aC,),)—¢ \/mRaSa/z}zwf 1t {\/%;Rasaﬂ + g(R+
+2aC,;5) \//IY}Zwizj +(emyR*+2Iy)d;G (w?, + w?;)
| [BemymyR?a’S}), +4emyly(R+2aC,,)* +(emyR* +2I)d2]G

(A.11)
where G? = (14-g2) and g is the mixing parameter.
B,, species
2 2 2 2
- R*+2Ix)d
w,123w114 wi3074(emy x)di (A.12)

- [12emy Iy +(emxR* +2I,)d?]
i2 i2
Wy3+wy, =

_ demyly{(d, - h_\/m_X)za)f;,, +(/mx+hd )0t} +(emyR? + 2 YH?d}d3 (w2, ﬂf:&)
[12emy Iy +(emyR* +21)d3]d2H>

(A.13)
where H? == (1+h?) and h is the mixing parameter.
B3, species
. 03 02,03 s(2emy+d?
C01126601127(01128 — ~16™017 18( X 1) (A14)

d(1+e)

i2 iz i2 i2 i2 i2 _
Wi6W17+ W 7013+ W W15 =
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2 2 2 2 2 2

2emyd (K0l swl, + wl,wls) +2emymyK WigWig+
2 222 2 2 2 2 2
+Qemy +d7)d; K (016077 + 013077+ 07 60715)

didi(1+¢)

(A.15)
ofs+ai,+oly =

2emydi[K*(0}6+03;) + (0], + wis)]+2emymyK* (@i +wis)+
+(Q2emy +dD K (075 + 0%, + o)
d2diK*(1+¢)
(A.16)

where K2 == (14+k?%) and k in the mixing parameter.
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