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We consider a two- and three-dimensional amorphous Ising ferromagnet with positive
exchange integrals I;; = <I>--AI; j in the zero field case assuming the fluctuations of I; j are
stochastical and small. By means of a thermodynamical perturbation theory we obtain the:
change of the free energy Af(T) in comparisen with the corresponding crystalline case
(I;j = <I>). The changes of the entropy, specific heat, internal energy, magnetization and
susceptibility are calculated and discussed. The structure fluctuations cause a decrease of
AT), m(T), and x(T). The convergence of the perturbation series is tested in a special case.
The amorphous Ising antiferromagnet in the two-sublattice model is considered briefly,

1. Introduction

The one-dimensional amorphous Ising ferromagnet was investigated in [1] by means
of thermodynamical perturbation theory for the case S7 = +1 [2] and was compared
with the results given by Fan and McCoy [3]. Contrary to the method by Fan and McCoy
the perturbation theory is applicable to the two- and three-dimensional case, too. As
in [1] we use the stochastical laitice model in which the spins are localized on the lattice
sites and being coupled by stochastically fluctuating exchange integrals which we can
write in the form Lj=&i;>+AL; - {I;) is the structure average of the exchange integrals
and 41I;; is the deviation from this average due to the structure fluctuations,

The basic equation for our calculations is the difference between the free energy per
spin for the amorphous system and the corresponding crystalline system which is given by

2
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(see [1], [2]).
The subscript “0” denotes the corresponding crystalline system in which is I; =
= (I;;>. z is the number of the next neighbours and 42 is defined as follows
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From (1) we obtain in the usual way the changes of the entropy 4s, specific heat 4c, in-
ternal energy Au, magnetization Am and susceptibility Ay per spin induced by the fluctu-
ations of the exchange integrals. '

From (1-4) in [1] follows that we need for our calculations the quantities uo(T),
mo(T) and xo(T). We consider for the two-dimensional case the simple-quadratic lattice
and for the three-dimensional one the face-centered cubic laitice. The formulae for uo(T)
and my(T) are exactly known in the two-dimensional case [4, 5]. For xo(T) are used the
results of a Padé-approximation in [6]. In the three-dimensional case the expression
for uo(T) is given by series expansions [7], vo(T) and mo(T) are given by Padé-appro-
ximations [6]. The calculations are done for a zero magnetic field.

The perturbational theory is not correct in the immediate vicinity of the Curie temper-
ature for the corresponding crystalline system T'%7. Moreover the magnitudes uo(T),
mo(T), and yo(T) for the three-dimensional case are only approximately given in this region.
Therefore we must omit the region near T from our considerations. The smaller is A2,
the closer we can approach to T'¢, because 4% is the expansion parameter.

2. Results and discussions

The results of our calculations are plotted in the figures 1-4. In the following we discuss
and interpret the results for Af(T), 4s(T), Ac(T), «(T), 4u(T), Am(T), and Ay(T) for the two-
and three-dimensional Ising model.

1. A(T), (Fig. 1).

The shift in free energy is smaller or equal zero for all temperatures. This is in agree-
ment with the Bogolyubov theorem for amorphous magnetic systems [8], which states that
always f(T) < fo(T). The shift in free energy for the two- (and three-)dimensional case has
a minimum above the Curie temperature of the corresponding crystalline system T and
approaches zero for higher temperatures.

2. As(T), (Fig. 1, 4).

With increasing temperatures 4s(T) increases from zero to plus infinity near TO.
Above T As(T) is negative and goes to zero for T — o0. The increasing of 4s(T) at low
temperatures is caused by the fluctuations with 41I;; < 0 because of the smaller exchange
integrals the coupling of many spins is weaker and the magnetic disorder enlarges. At
high temperatures the greater exchange integrals with 4I;; > 0 give rise to an additional
local magnetic order. In the vicinity of T© the used simple perturbation theory gives no
real results. Remarkable, if we regard the results found for the three-dimensional case in
the region T/T =0.95, ..., 1.02 as physically unreasonable (broken line), then we can
suppose a behaviour for 4s(T) (plotted), which is very similar to the one-dimensional
case [1]. But it is possible that the difference between the two- and three-dimensional
case is caused by the used series expansions in the three-dimensional case.

3. Ac(T), (Fig. 1)
With increasing temperatures Ac increases from zero to plus infinity near T’ 0. Above
T Ac is first negative goes then to positive values and approaches zero for T'— 0. In the
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vicinity of T¢? we find in the two- and three-dimensional case a singular behaviour,
which follows from the perturbational theory and has no physical meaning. Outside this
region Ac(T) behaves analogous to the one-dimensional case.

Fig. 1

4. o(T), (Fig. 1)

With increasing temperatures ¢(7') increases from zero to plus infinity near 7.
Above T ¢(T) decreases from plus infinity and approaches zero. In comparison to the
crystalline case we notice a broadening of the peak away from the Curie temperature and
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one can state a shift of the peak to lower temperatures. This suggests for the Curie temper-
ature that T, < T,

5. Au(T), (Fig. 1)
For 4u(T’) we find an analogous behaviour as in the one-dimensional case [1] (see
also below Remarks on the convergence).

2.0imensional

10

—T/ T

Fig. 2

6. Am(T), Ay(T), (Fig. 2, 3)

With increasing tempetatures 4m decreases from zero to minus infinity at T, Above
T Ay increases from minus infinity and approaches zero. The changes of both the magnet-
ization and susceptibility are in agreement with [2] always negative. This suggests also
a shift of T, to lower temperatures. Remarkable that the relative changes of the magnet-
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.. Am o A
ization — and of the susceptibility = are for the two-dimensional case greater than
mo Xo

for the three-dimensional one. One can interpret this in the following way: The greater is the
number of next neighbours z, the weaker is the influence of structure fluctuations.

3. Remarks on the convergence

In every perturbation theory one must ask for the maximal perturbation parameter
for which the calculation is physically reasonable. To verify this we consider for the one-
dimensional amorphous Ising model the internal energy per spin for H = 0 (see Appendix).
We assume a distribution function w(J;;) for.the stochastically fluctuating exchange integrals
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I;;. With it we calculate

exact exact

Au(T, AZ) = u(T, Az)—uo(T) = IW(Iij) “u(T, Ij) - dl;j—uy(T) 3

and compare it with the change of the internal energy Au(T, 4%) obtained by the perturba-
tion theory. We regard various distribution functions w(J;;). For all cases we find that

exact

with decieasing 4% Au(T, 4%) approaches Au(T, 4%) (Fig. 5). From this we can conclude
that our perturbational series reproduces the real situation in a good approximation for
4% £ 0.2. In Fig. 5 one can see that with increasing temperatures this approximation
is going better. One must remark that the tested zero field case is the most unfavourable
case regarding the convergence of the perturbation series. Such a simple test of the con-
vergence is not possible in the two- and three-dimensional case.

If we choose for a given distribution function the parameter 42 so great that by it
a part of the exchange integrals is negative then we find a decreasing of the ground state
energy (Fig. 6).
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4. Antiferromagnetic case

It is also possible without additional calculations to get the change in free energy for
an amorphous Ising antiferromagnet in a zero magnetic field.

The free energy per spin of a crystalline Ising antiferromagnet with two sublattices
and only next neighbour interactions is

= s & —8 % |I:i;]8:=5;
f - N ﬁ In € . 2 (4)
{S4,58}

where S, Sy denote the spins of the two sublattices. Obviously the substitution Sz —» —Sjg
does not change the free energy f, (see also [9]). From this follows that for H = 0 the free
energy is equal for an Ising antiferromagnet and for the corresponding (f;; — —1I;;) Ising
ferromagnet. In an analogous way one can show the equality of the (sublattice) magnetiza-
tion of the antiferromagnet and the magnetization of the corresponding ferromagnet
for H = 0. From this one can conclude that Tye.; = Tcurie- The principal analogy between
ferro- and antiferromagnetics holds also for arbitrary fluctuating exchange integrals
within the lattice model. This means that all results for Af, 4s, 4u, Ac, and Am for the
amorphous Ising ferromagnet are the same for the two-sublattice amorphous Ising antifer-
romagnet (with next neighbour interaction)in the one-, two-, and three-dimensional case
for H=10. All this is also valid for the Heisenberg model, if the spin goes to infinity.
The authors are grateful to Professor G. Heber for helpful discussions, and Mr R.

Pott for assistance.

APPENDIX

The magnetic part of the partition function for the one-dimensignal Ising chain in

a zero magnetic field is given by
Zy = Tr SEWSSS o Ty MFssS S - [T [4cosh (2B41)],
{81,855} {8i28%; + 1} i

where S7,S87= +1.

The subscript “St” demonstrates the dependence from the arbitrary but fixed struc-
ture. Remarkable, in no wise we assume the same magnitude of the exchange integrals
I ;1. With this we obtain for the magnetic part of the free energy

1 1
F=(Fyy = — /—gln Zg=— B(Z In (4 cosh 281;;:41))) =

= — %] {In (4 cosh (2B1;;+1))>

where the operation <...) means averaging with regard to the structure. Assuming any
distribution of the exchange integrals w([;;.,) the free energy per spin can exactly be
written in the form

exact

AT = — é : fdli,i+1 *w(l;41) - In (4 cosh (281 ;1))



By it we get for the internal energy per spin

exact

w(T) = =2 [dl;0q - Wlizeq) Iipey - tanh 2B, o).
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