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In the present paper we present some further results for the quantum mechanical
system of three collinear particles, already studied in our previous work. The expressions
for the probability amplitudes and cross-sections for all possible scattering processes are
given explicitly. The moduli of the amplitudes are expressed in terms of elementary functions.
The reversibility and flux conservation rules are ciscussed on the basis of the configuration
space scattering theory. The system in which one pair interacts via the hard-core type inter-
action is studied as a special case of the general model and discussed in detail.

1. Introduction

In paper [1] (hereafter referred to as I) we have discussed the quantum-mechanical
scattering model of three particles in one dimension. In the model considered the two-body
interactions were described with the aid of a boundary condition stating that the loga-
rithmic derivative of the wave function with respect to the interparticle distance x is constant
for x =20, i.e.: .

P(x)
P(x)

—o for x=0. 1

Such a zero-range potential allows for the existence of a single bound state of a pair,
of energy E, = —a?. The three-body system which we construct with the two two-body -
subsystems of this kind represents therefore the simple boundary condition model (BCM).
In this model exchange and-dissociation processes are possible.

As it was shown in I, the solution of the Schrodinger equation for the system under
consideration can be adopted from a certain acoustic diffraction problem, the solution of
which was given by Malyuzhinetz [2], [3]. Employing this fact the exact expressions for
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the wave function and for the probability amplitudes for the elastic, 1earrangement and
dissociation processes were written in terms of certain special functions [2]-[4].

In Sections 2 and 3 of this paper we recall briefly the definitions, notations and basic
concepts of I. In Section 4 we give the expressions for the probability amplitudes of all
scattering processes of our model. These expressions are employed to derive the expressions
for scattering cross-sections, this being done in Section 6.

It is remarkable that the cross-sections are expressed in terms of simple elementary
functions. The derived expressions are then used to illustrate the reversibility and unitarity
conditions. The model in which one of the two-body potentials is of the hard core type and
the other one is of the type desciibed by (1) is treated as a limiting case of the general
model, this procedure being described in the end of Section 3. The cross-sections for the
model with one hard core potential are given in Section 7. The behaviour of cross-sections
as functions of mass ratio and energy are also studied. ’

In our earlier work we have constructed the Faddeev equations for the model under
consideration and discussed the case of three particles with equal masses and two-body
potentials of equal strength [5].

- A particular case of the model solved here was studied earlier by Nussenzweig [6]
and is discussed in Section 4. In his model two particles of equal masses interact
with a fixed center of force.

After this paper has been written in its present form, a paper by Mc Guire and Hurst
appeared [7] in which a solution for the same one-dimensional houndary condition model
is presented independently. Mc Guire and Hurst did not use the solution of the acoustic
problem by Malyuzhinetz [2], [3], but rather adopted a method outlined by Williams [8].
The relation between the special functions of Malyuzhinetz and the Barnes unsymmetric
double gamma functions used by Williams is given in the Appendix. The closest corre-
spondence occurs between the Section 6 of our paper and the final results of the above
mentioned paper. ,
~ Our model is a one-dimensional counterpart of the so-called boundary condition
model (BCM) studied in nuclear physics (see for instance [9], [10]).

2. Description of the three-particle system

We recall first the notation -and some definitions introduced in I. For the system of
three collinear particles with masses m; and position and momentum coordinates in the
center of mass system (c.m.s.) r; and k; respeciively we define the following coordinates

2mym, |*
s3 = (ri—73) [——1—3] i

my+m,
e (m1"1 —|'-‘m2r'2 _ r3)>|:2m.‘3(m1—+ m,) :r’ )
m1+m2 . -m1+m2+m3 .
myky—mk, my(ky+ky)—(my+myk, 3)

D3 = 1 q; = .
i B [2m1m2(-'m1+m2)]% 3 [2ms(m+my) (my+m,+my)]F
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as well as the coordinate systems (s, 7;) and (p;, g;) the definitions of which may be
obtained from the Eq. (2) and (3) by cyclic interchange of the indices. In the following
the notation (s, #) will denote one of the orthogonally equivalent systems (sy, #);) of (s3, 13).

We study the system of three particles described by the Schrédinger equation of the
form (we put h =1)

—AY(s,t) = E¥(s, 1), 4
0
o Y(s, ) +asP(s, 1) =0 for 53 =0, 4.1)
S3
0
a—— Y(s, )+a,P(s,5) =0 for s, =0. 4.2)

The boundary conditions (4.1) and (4.2) describe the action of the zero-range impenetrable
and “‘noncentral” potentials ¥ and ¥, between the pairs (1, 2) and (2, 3) respectively.
The solutions for the two particle Schrodinger equation with the potential of this kind
were discussed in I. In our model the two-body constants &, and ‘a3 are negative and real.
We choose the ordering of particles to be 1 2 3; in this case motion of particles is confined
to the region s; < 0 and s3 < 0 in the (s, #) plane. In this region owing to the fact that
oy < 0 and a3 < O there is a possibility of formation of the bound state of the pair (1, 2)
with the binding energy — a2 and of a bound state of the pair (2, 3) with the binding
energy — a. There is no such possibility for the pair (1, 3). We introduce the polar coordi-
nates (¥, ¢) defined as follows:

§3 = rsin (@), sy = —rsin (P— @),
ty ='rcos (P+¢), ty =rcos (P—g), )

Fig. 1

where the angle @ is related in the following way to the particle masses m;:

sin 2@ = [ m2(m1+m2+m3) ]L, cos 29 = [ s T,
(my+my) (my+ms) (my+my) (my+m3).
1§20 = I:mz(m1 +m,+ m3):r.. ©
myms;

The coordinate systems (s, ¢) and (r, ¢) are shown in Fig. 1.



118

Employing the coordinates (r, @) we may write the Schrodinger equation (4) in the following
form:

? 10 18

o’ a1 og?
10 L :
~(,j—Y’(r;tp)+i\/Esm@_T(r,<p)=0 for ¢=—9, (7.1
=T

10 -
r oy Y(r, p)—iJEsin @, ¥(r,9) =0 for ¢=0, _ (7.2)

where the complex numbers @_ and O are related in the following way to the constants
a3 and o; and to the total energy E:

ia3 1 '\/E+a§ “‘“3

O_ =Arctg—r—=—In——nu——"> ®)
\/E+a§ 2i \/E+a§ +os
i 1 E+a? —
© ., = Arctg —,—ml— =— n\/—tal i< ) - ®
VE+oai 20 JE+a? +o
JEcos O_ = E+ol, —iJEsin@_ =a, (10)
JEcos @, = VE+o?, —iJEsin®, =a,. (11)

We choose the branch of the square root with the positive imaginary part and the loga-
rithm and arc tangent functions are understood in the sense of their principal values.
This choice is dictated by the condition of obtaining the physically admissible solution

Y(r, ).
In the scattering problem we have to distinguish three energy regions for the total
energy E. Assuming first that

—a? < —a?, (12)
we determine these regions as follows:
Region I:
—oc§<E< -2, E=—n*<0. a3

In this region the only possible scattering process in the three particle system is the elastic
scatering: '

(1,2)+ 3 > (1, 2)+-3. (14)

We say that the only open channel is channel 3.
‘The argument of the Arctg function in Eq. (9) is real and @ is a real number in the

interval (— lzt—, 0) (approaching - gat the upper threshold of the considered energy
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regibn). On the other hand, the “angle” @_ should be written in this energy region in the

following form:

O_=—ig" -2 5
= —iet -, (15)
where
1 as—\/ag—nz
O =-In—+=—=>0. 16
2 a3+ Jai-n? (1)
Region II: ‘
—-a}<E<0, E=-I<0. an

In this energy region two channels are open, namely channel 3 and channel 1 corresponding
to the formation of the bound states of the pair (1, 2) and (2, 3) respectively. Thus we
have two possible initial and final situations and the energetically admissible processes
are elastic and exchange scatterings. The quantities @ . and @_ may now be written .in the
following form:

0, = —i@', — g (18)
where
1 . 2_12
@ =-In °ﬂ_§: > 0, (19)
2 azt \/ocg—lz
1 _ 2_12
e, = -1&%_; > 0. (20)
2 OC1—'- \/al“'l
Region II:
E=k>>0, JE=k>0. 1)

Besides channels 1 and 3, channel 0 corresponding to the free movement of three
particles is also open. The break-up and recombination processes are energetically admis-
sible. In this region we have

0, = —iok, (22)

where

>0, 23)

n—-
2 '\/E\+“§ +O£3

0. 4)

1
- n——
2 \/E+ocf +oy
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Employing the definitions (5) and the relations (10), (11) we can express the unnormalized
initial and final state functions for channels 3 and 1 in the following form:

1/’;(53, t3) = e""'”’*imh — e—iVErcos(QHq,—@_)’ 4 25)
Yo, 1) = ¢TIV Y Eremorove (6)
Yi(sy,ty) = e-usimiVET@in _ i Ercos (p=0+04) @
| 1/1{(81, tl) i e—a'lSl+il/mt1 = ei Vfrcos (¢—¢—9+). V (28)

The initial and final state functions of channel 0 are the plane wave functions:

v, g) = e oo,

Yo(r, ¢) = e, ‘ (29)
where ¢’ is related in the following way to p; and g; defined by (3):
p3 = —ksin (9+¢') p1 = —ksin (P—¢'),
qs = —k cos (&+¢'), q1 =k cos (P—¢’). (30)

3. The solution of the scattering problem

Equation (7) with the boundary conditions (7.1) and (7.2) was solved by Malyuzhinetz
[2], [3]. The equation should be supplemented by two further conditions guaranteeing
uniqueness of the solution, namely:
1) ¥(r, @) is bounded for r =0; v
2) The part of ¥(r, ) resulting from the subtraction of the incident wave and of the waves
reflected from the boundaries ¢ = + & is bounded at infinity. Malyuzhinetz represents
the solution of Eq. (7) in the form of the generalized Fourier transform

i .
Y(r, p) = . je"VE'°°szs(z+ @)dz, (31)
b

where y is the Sommerfeld contour in the complex z plane. It is described in I for the
both cases of \/E =k real, k >0 and of /E purely imaginary with Im /E > 0.
The method of calculation of the transform s(z) of the Sommerfeld integral (31)
is described in [11]and [12]. The function s(z) is written in terms of the special meromo1 phic
functions My(z), the definitions and the properties of which are given in the Appendix.
The solution ¥(r, ¢) written in terms of those special functions takes the following form:

1 .=
Y(r, p) = P J‘e_“/E'“’” - F(z) - [F(tpo)"_ldz, (32



where

= a4+ £ 0. o (5= 5 0. ) e+

T
+¢—g+@+)M¢<z—¢+E—@_), (33)

and P(r, ) is the solution of the scattering problem‘corrg:sponding to the initial state
exp {—i/Ercos (p—@o)}. From (25) and (27) we see that when the initial states are
in channel 3 or 1, @, is complex and

@o = —®+6O_ for channel 3, (34)
L o =9—-0, for channel 1. (35

Using the diffraction theory language we say that the surface wave is coming from infinity
along the boundary ¢ = —® or along ¢ = @.

In the case of scattering of three free particles, the initial state is given by the first
expression (29), with ¢, = ¢’ being real and

D < @y < P | (36)

As it was described in I the physically interesting quantities for the scattering problem
under consideration may be deduced from studying the asymptotic behaviour of the
solution (32) for large values of r. For positive values of E the asymptotic expression for
the solution (32) takes on the form

Y(r, p) = e~ *reos@=9) 1 the waves reflected from the
boundaries +C_eikr cos ((p+5_+9—)+ C+eikr cos ((p—«b—@.,.)_l_
+1(@, @o) @ukr)"2 @Y for  kr > 1. \ (37)

The coefficients C_ and C,. can be interpreted as the probability amplitudes for the formation
of the bound states of the subsystems 3 and 1 respectively in the course of the scattering,
and the coefficient f{¢, ¢o) — as the probability amplitude for the free departure of three
particles, as explained in Section 5 on the basis of the configuration space scattering
theory. The explicit expressions for C, and f(g, ¢o) were written down in paper I. By
substituting / E in place of k in the expression (37) and taking into account the behaviour
of @ and @ as functions of E as it was described above in Section 3 we obtain the expression
describing the asymptotic behaviour of ¥(r, ¢) in all three energy regions I-IIII. The
channel which is closed in a given energy region will be represented in this expression
by an exponentially vanishing term.

Below in Sections 4 and 7 we consider separately the particular case of the BCM
in which the interaction between the pair (2,3) is of the hard-core type, and the interaction
between the pair (1,2) is still of the type described by (1). It is evident that this model can
be treated as a particular case of the model described above, when we study first the be-
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haviour of the two body solutions corresponding to the potential (1) for large values
of -Ja}. In the limit 1/|a| == 0 this boundary condition goes over into the condition

P(0) =0, (38)

representing the one-dimensional hard core interaction. Hence, making the transition
joey | = 00 in our three body model described previously we obtain the model in which
the condition (4.1) remains unchanged and (4.2) is substituted by

Y(s,t) =0 for s;=0. 39)
From the second expression of (11) we see that the transition |«,| — 00 corresponds to:
ImO, > = . (40)

I_n Sections 4 and 7 we apply the limiting procedure (40) to the general expressions for
probability amplitudes and cross-sections obtaining in result the corresponding quantities
for the hard core model.

4. The probability amplitudes

Here we collect the explicit expressions for the amplitudes C, and f(g, ¢o) with
specified initial situations. The results are obtained by substituting ¢, of the form (34),
(35) or (36) into the expressions (36), (37) of I, and then by using trigonometric transforma-
tions and functional relations for the functions Mg(z).

All the amplitudes may be collected in the following matrix form:

ci S ()
C ey “if e | (41)

Cg(‘Po) Cg—(?’o) f 0(‘7’, ®o)

where the superscript denotes the initial channel and the last row and column are under-
stood to be the sets of quantities with continuously changing variable ¢, and ¢ respectively,
with [pl, ol < ®.

" For the general case of the model, with finite values of , and a5 the expressions for

the amplitudes are:
cos m/2(O . —O_—mn) : “
cos® m[2A@ . —O_) cos m[2O , + 0O _) sin m{2(20 _ +7)
x [Mo(n[2)] ™ [Mo(n[2+ 6 — O )Mo(r|2+ O  + 0 IMg2® +7[2+20 )], (42)

C: =ctgO._

where
m = n[20; (43)

c3 sin mn/2 ctg O _ o
T cos m({2(@,.—6_)cos m/2(O +6_)cos m/2A(O,+6O_+m)

X [Mg(n/2)] *[Ma(n[24+ O 4 + 0 ) Mg(2P +71/2+20 )M o(2D+7[2+26_), (44)
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—4 /mctg ©_ sin mn[2 cos me cos m{2(O . —O _—n)
“cos m{AO . —O_) [cos m(O _+m)+sin mep] [cos mO _+
" +sinme] [cos m@ ;. —sin mg]

X [Mo(n[2)] " Mg(m[2+ O 4 + O )Mo(2D+7[2+20 IMo([2+0 . — O ) - L(p), (45)

X

o) =

where
L(g) = Mo(p+®—1/2— 0 IMy(p+P+7/2+ 0 )Mo(g— D —1/2— O )Mo p—
—P+7w24+60_,) . (46)
1@, o) = 4m sin mn2 cos me cos meo[ Mo(n/2)]™* - L(9) - L(go) y

[cos m(@— @o)—cos mn] [cos m(@+ @)+ cos mn] (cos m@O ;. —sin mey)

1
X
X (cos mO _ +sin mgy) (cos mO . —sin me) (cos mO _ +sin me)

x {(sin me+sin me,) [cos m(@ . —n/2)—cos m(O _—n/2)]+
+2 cos mn/2[cos m(O . —n[2) cos m(O _ —n[2)—sin me sin mey—sin® mn[2]} (47)

ol o= ctg @, cos m/2(0 . —O_+m) 8
T cos? mj2AO . — O _) cos m/2O , + O _) sin m[220 , +m)

X [Mo(n/2)]™ *[Ma(n[2+6 - =6 ,)Mo(n[2+ 6 . + 60 )Mo(20+7[2+26.,)]*

. > (48)
—4 \/mctg O, sin mn[2 cos mg cos m{2(O , — 6O _ +1)

cos m/2(0 . — 06 _) [cos m(n+ O ,)—sin me] [cos mO , —
—sin mg] [cos mO _ +sin mg]

X

(o) =

X [Mg(n/2)] "M a(m/2+ O, + O IMyH2P + /2 +20 )M g(n/2 +

+6_-0.)- L(y) “9)
Direct calculations give
CL=tgO_-ctg@, C3, (50
Clpo) = =218 0_ - (¢ = @o), (51)
Cilgpo) = =212 O f(p = o). (52

These expressions were obtained from the expressions given in I by extensive rearrange-
ment in which physical poles and zeros were made to appear in the trigonometric parts
of the expressions!.

' * Expressions (47) and (56) lose sense for those values of real ¢ which correspond to the poles of the
above expressions. For these singular directions ¢, the asymptotic representation (37) must be replaced
by a more general one (for the wedge problem with the boundary condition ¥(r, +®) = 0 see [13]).
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As it was described in the last part of Section 3 we may apply the limiting procedure
(40) to the above expressions obtaining the quantities characterizing the model in which
the interaction between the pair (2, 3) is described by the condition (39). The table of
amplitudes for this case can be obtained from (41) by cancelling off the middle row and
column. Barred symbols correspond to this particalar case. Making use of the expreséion
(A.11) for the asymptotic behaviour of My(z) for [Im z| — oo and of the relation (A. 9)
we obtain the following results:

To ctg ©

L= e w7 Mo Mo+ 7242007, (53)

—2/mctg O - sin mn/2 - cos mg

=aln o N
o) = (cos mO +sin me) [cos m(O +r)+sin me] [Mo(m/2)] ™ x
X Mg(20+7/2+20) * L(g), (54
P, 70) = 4m - sin mmn/2 - cos me - cos me,
> Y0 —

x
[cos m(p— @o)—cos mn] [cos m(p+ @)+ cos mn]

" sin me+sin meq +2 cos mn/2 cos m(@ —n/2)

(s1n mey +cos mO) (sin me+cos mO) [Mo(/D]™* - L(p) - Lgo) (53)

Clpo) = =218 0 * f (¢ = ¢p), (56)
where

0=0_, L) = Myp—®—1/2—0)My(p—d+7/2+0).
From the above-expressions we see immediately that
FHP) =13(9) =19, po) = f3(#) = g, po) =0 for ¢ = £,
CH(@o) = f%p, po) = CH(@o) = f%p, @) =0 for o = £0. (57)

For such values of @ that m = 2n, where n is an integer, no dissociation nor rearrangement
takes place as can be seen from Eq. (44), (45), (47) which contain the factor sin mn/2.
For such a case the full solution of the scattering problem is given by the sum of the
incident wave and the reflected waves which are of the same nature as the incident wave.

- For m = 2n+1 no such degeneration of the solution independent of the @, takes
place. If we, however, put further in the expressions for the general case @ = O_ (i.e. o0y =03)
we find that the only nonzero amplitude is that of the reatrrangement process. When the
initial channel is 1 (or 3) the reflected wave leaving the reaction center is in channel 3
(or 1). When the initial state is a plane wave exp {—ikr cos (p— @o)} there is no truly
cylindrical wave and the plane wave leaving the reaction center is exp {ikr cos (¢+ @o)}-
The simplest case corresponding to the group of solutions described above is the system
of three particles with equal masses and equal constants a; = o3 for which the Faddeev
equations in the momentum representation were studied in paper [5].
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From the properties (A.6) of the function M4(z) we see that when m = 2k/I, where k
and / are natural numbers and the whole fraction is rereducible, the expressions for the
amplitudes may be written in terms of elementary functions. The model discussed by
Nussenzweig in [6] belongs to this group of solutions with m = 4/3 and one of the two-body
interactions of the hard core type.

In order to study further the analytic behaviour of the amplitudes as functions of
o4, %3, E and mass ratios, one has to substitute the expressions relating @ _to these variables
into the exptessions for the amplitudes and to employ the definition of the special function
My(z) given in the Appendix. We shall however confine ourselves to the discussion of
the reversibility rules, given in the next section.

5. Configuration space treatment of the three particle problem

We base our considerations on the Gerjuoy’s method of approach to n#-body collision
theory [14]-[16]. The fundamental theorem in this procedure is the multidimensional
Green theorem, which — when applied to the solutions of the Schrédinger equation —
states that given two solutions ¥; and ¥, of the same Schrodinger equation:

OV, #?2 .
Z ( - — v,i) + V(r)—E] Y =0 (58)

i=

. . . . -

for n particles with masses m; and coordinates r;,
- -> -+

r=[ry .1l

then

1 - -
JdSJ(Y’z, ¥ = I f ds-w[¥,, ¥;] =0, (59)
i o
where the integral is over the surface at infinity in the 7 space; dS = 7 # dS, where 7 is
the unit outward normal to the surface; W is the vector in the 7 space,
W = [Wb eeey VV,,],

with the components:
2

= h ;
WiL¥,, lF1] i 2 (qlzvanl._ gllvriTZ)' (60)

m;

The vector opetator 1/ihW is the quantum-mechanical current operator for the n-particle
system in the 7 space. Gerjuoy has shown [14], [15] that the solution ¥ of the n-particle
scattering problem can be uniquely determined by the boundary condition for large values
of r stating that the scattered wave y,, = ¥ —y;,. has the same asymptotic behaviour
as the Green function G* of the total Hamiltonian, in the following sense

[dSU[G* (7, 7), ¥ (F)] =0 for all 7. (61)



126

In equation (59) each direction n at infinity corresponds to a possible formation of a definite
class of aggregates of the n particle system. Substituting ¥; = ¥ and ¥, = ¥* in (59)
and calculating the surface integral at infinity as a sum of contributions from all elements
dS corresponding to the formation af all energetically possible aggregates of the system
described by the wave function ¥, we obtain the probability current conservation rules
expressed in terms of the cross-sections of the scattering processes. When ¥; and ¥,
in (59) are two scattering solutions with different initial channels we obtain with the
aid of (59) the reciprocity 1ules relating the probability amplitudes of the mutually reciprocal
processes.

For the Schrodinger equation (4) written in terms of the coordinates r, ¢ as given
by (7), equation (59) takes the following form:

D
lim [ dori(¥s, ¥;) =0, (62)
where
i, v) = 2| Oy _w ly
29 i U4 e i Zar 1 1 ar 2 (63)

and ¥, ¥, are two solutions corresponding to the same value of energy E, different
from zero in the region |p| <P,

YLY, =¥  i=0,1,3, (64)

where the superscript i denotes the initial channel of the solution ¥;.
In order to calculate the surface integral (62) we employ the asymptotic expression
(37) which shall correspond to a determined initial channel 1,3 or 0 when we put

Po=DP—0, po= —P+0O_, or ¢, real, |po| < P.

Let us put in (62):
qllt-_—'" T3; q’z = Tl. (65)

The only nonzero contributions to the surface integral (62) at infinity are those from the
elements rdg in the directions +®, or — in other words — those in the directions s; =0,
55 = 0. Expressing the state functions of channels 1 and 3 in terms of the coordinates
(s, 1), as given by the expressions (25)—~(28) we obtain in.the limit of large r:

0
"‘2C{. - Im e—iVE+a23t3_iei]/E+a23t3> . J e—2a383dss+
| dt3 i
B VETEL d ., |
+ZC?|. ‘Im|e™ Btatin ;l-t—‘ elVE-H‘z1 oF J‘ e—2a1s1d51 = 0. (66)
L 1 .

-~
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In result, employing also the relations (10) and (11), we get
ctg@_-CL =ctg®, - C3, (67)
in agreement with (50).

In order to obtain the equation relating the amplitudes for the recombination and
dissociation processes we put

Tl = ![13, '_‘Fz = YIO’ 0 < E < OO, (68)

in the integral (62). :
We use the following asymptotic expression for the incident plane wave [19]

- —ikr cos (¢ — 2n —in ikr . —ikr
g e (0700 HT“;\/Ee "9~ po+m)+ie”3(p— )} (69)

We note that the support of the first 6-function in the expression (69) lies outside the region

lpl < @.
For ¥, and ¥, given by (68) the only nonzero contributions at infinity to the integral

(62) are:

o i -,
Prdp = J[\/ ie =010 e e'“"*""“] rdy (70)

along the direction ¢ = @, and — in terms of the coordinate (s3, #3):
Jsrd97 — J[C(l((po)e—a3sg—i_l/E+a23t3’ e—0£3S3+iVE+a23t3]dss (71)

along the direction s3 = 0.

The “‘surface wave” terms exp {—oc3s3+z\/E—l—oc3 t3} and exp { 048y +z\/E—l—oc1 4}
and the dissociation terms do not overlap because the dissociation terms vanish on the
boundaries ¢ = + &.

When calculating the contribution from (71) to the integral (62) we employ the fact
that exp {—ass;} is exponentially decreasing for s5 - —oo thus allowing us to extend
the s; integration limits to (— oo, 0).

Hence we obtain:

[ [ = %
E 2
f ordp+ f Psy =275 = g+ YEXB oy o, (72)
-d - | “3
Clpo) = =212 0_ - (¢ = ). (73)
In a similar way we get:

Cilpy) = =2 tgo, 'fl(‘P = @o) (74

in agreement with (51) and (52).
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As a consequence of employing (62) for two solutions corresponding to the incidence
of the plane waves in the directions ¢; and ¢, respectively we obtain the rule of symmetry
for the amplitude f(@, @o): '

FAp1, 92) =P 92, | 9)

which is easily seen to be satisfied by the expressions (47) and (55).
The flux conservation rules can be derived from the general relation

[
lim | derJ(¥', ¥) = 0. (76)

b r—»ow —®

We define the cross-section for a given scattering process as the probability for such
a process to take place divided by the incident probability flux. According to Gerjuoy
[14], [15] the corresponding probability currents may be calculated as contributions to
the integral (76) from the directions ¢ in infinity corresponding to the formation of the
appriopriate aggregate in the three body system. The directions ¢ = @ correspond
to the formation of the pairs (1,2) and (2,3) and the direction ¢ = ¢, |¢'| < @ corresponds
to the free departure of three particles, with ¢’ playing the role of their polar mo-
mentum coordinate as given by (30). )

Employing (76) for ¥ = ¥ and making use of the definitions of cross-scctions given
above we obtain

GSI(E)'FG?eal:r(E)'I'agiss(E) = 1’ (77)
where
oA(E) = |C21%, (78)
o \/ E+a?
ChrardB) = == " LCLP =tg @ ctg 0,4ICLI%, (79
\/E-I-Ot:,, al
(] )

agiss(E) b jq) agiss(Eﬁ (P)d‘Pa (80)
(B ) = = L = Lige_1rmr (81)

L0 VE+aZ © T

For the values of E below a given threshold, the corresponding cross-section does
not contribute to the sum in (77). In a similar way we can define the cross-sections for
the system described by the function ¥*:

a(E) = IC4 1% 32)
a:earr(E) = tg Q+ i Ctg o_ ' ‘C1—|23 (83)
ohilE, ) = — 18 0. If (@ (84)

) [
a:l(E)'l'a:earr(E)"’ ..qu o-;iss(Ea ‘P)d?’ =1L - (85)
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From . (67), (79) and (83) we get
a:earr(E) = asearr(E)' (86)

In the case of an initial state of three free particles we find the usual difficulties when
trying to define the cross-sections. There are plane waves incoming and outgoing to in-
finity [16]. We give here only the probabilities of occurrence of recombination and of
“clastic” scattering resulting from the encounter of three free particles described by the
plane wave exp {— ikr cos (¢— @o)}.

The probabilities for the recombination processes are

2
PY(K?, @o) = \/k +“3 ICO( o> = —ictg ©_|C2(gpo)? (87
k
Pk, @o) = \‘/—'? IC%(go)|* = —ictg 0.1C%(po)%. (88)
— 0

The proba;bility for elastic scattering of three particles into the angle element dg is
1.
P05 9, @0) = ~ (9, po)l*do. (89)

It should be mentioned that we have also obtained the relations of the type (73)~(75)
by expressing ¥ as the solution of the appropriate Lippmann-Schwinger equation and by
imposing next the time-reversal invariance for the system under consideration. However,

=cause of the highly singular character of the potentials we use, the route via the Green
theorem seems to be a more natural one.

In the next section we derive the expressions for the cross-sections and use them
to illustrate the flux conservation rules.

- 6. Cross-sections. The general case

In this section we show that in distinction to the amplitudes the cross-sections for ail
possible scattering precesses in our model may be expressed in terms of elementary functions
in a relatively simple form. ‘

We limit ourselves to the case when initially one pair is bounded. For the scattering
problem in which initially three particles move freely it is not possible to define the cross-
-sections in the same manner, as we do it for the bound state Scattering [14], [t16]. However,
also in this last case the probabilities of all possible scattering events are also expressed
in terms of elementary functions, as is shown below. ‘

Let us consider first the energy region I, for which the total energy E is below the
rearrangement process threshold. In this region @ is real and @_ is given by (15), (16).
Using this fact, employing (A.13)~(A.15), (42) and the definition (78) of the elastic cross-
-section we obtain that -

oy(—n*) =1 (90)

in agreement with the flux conservation rule.
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In a similar way using (42), (44), (48), (50) and the functional relations of Appendix

we find that the elastic and exchange cross-sections in the energy region II:
—l<E=-’<0

are expressed as follows:

ch® m/2(@'; + 6L) - [ch® m/2(6", — ") —sin? mn(2] 3

ch® m/2(0', — L) - [ch® m/2(6", +OL)—sin *mn[2]

_ ch? m[2(@', — ') —sin® mn/2

0'31( = 12) S

ch? m[2(6', —6") [ ch? m/2(6", + 6" )—sin® mn/
= a:l(— lz)s
sin® mn/2 - sh m@", - sh mo"
ch® m/2(@", —01) - [ch® m/2(@'", + ") —sin® mn/2]
A = o.:earr(_ 12)’

where ©', are given by (19) and (20).
Adding (91) and (92) we get

ar3earr( . 12) =

o'el(_ 12)+arean(_ 12) = 1.
For the energy region over the break-up threshold we obtain
sh? mO“ [ch? m[2(0% — @% )—sin® mn/2]
ch® m/2(0% — 6% ) - [sh®* m@* +sin® mn[2]
_ ch? m[2(6% —6%)—sin® mn/2 . sin® mnf2
B ch? m/2(6% — 6%) sh? mO* +sin® mn/2 |’

oa(k?) =

‘ allkkz) _ ch? m/2(@% — 6% )—sin® mn/2 - sin®mnf2
E ch? m/2(6%. — 6%) sh? m@* +sin® mn/2 |’
) = S 2 $h MO - sh mE% )

ch? m/2(6% — 0%) [ch® m[2(O% + 0% ) —sin® mnj2]

ch m/2(0% +6%) 3
ch m/2(6%. — %)

% [ch? m/2(0%, — 6% )—sin? mn[2] x

, 4m
03is(k2, @) = 7m sin?> mn/2 sh mO*.

cos® mg

sin® mn/2 _ ’
5| =

©®n

%2

93)

4

5)

(96)

X
[(cos mn ch m@* +sin me)* +sin? mzn sh> m@* ] (ch m@* —sin me)

2

(ch mO* +sin me)

on
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where @" are given by (23) and (24) and the dlﬁ‘erentlal break-up cross-section o3;, (k2, @)
is deﬁned by Eg. (81). The expression for 04iss (K2, @) is obtained from (97) by simple
exchange of % and % and by substituting — ¢ for ¢. According to (80) the total break-up
cross-section o4, (k?) is to be calculated by integrating g (k?, @) with respect to ¢
over the interval (—®, ®). The very lengthy integration of (97) could be performed by
the method of residues; however we find 0g;,(k?) with the aid of the conservation laws.
We found that this results agree with the explicit calculation for the particular case of
@% — oo (see Section 7).

The total break-up cross-section calculated with the aid of the unitary condition (77)
equals to
ch? m/2(@% — 6% )—sin® mn[2

h? m/2(6% —0%)

03:(k?) = sin® mn/2

1 1 '
+ : .
. [ch2 m[2(0% +O%)—sin* mn/2  sh> mO® +sin’ mn/Z] ©8)

An expression for a};. (k?) is obtained from (98) by interchanging the indices + and —.
Employing (19), (20) and (23), (24) we may express the hyperbolic functions occurring
in the expressions (91)-(98) in terms of a;, 3 and E in the following way:

shm@. 1 (WVE+d2 —a3)m$(—\/E+d§ —ay)"

=3 N : (99)
shmo', 1 WE+do? —al)M;(—\/E+o¢f —ay)" -
chmb’, 2 «=E" ’

ch m/2(@, +0L) = } x
\/E+oc3 —o3)" (£ VE+ai —a)"?*+(—VE +oc3 —oc3)""2(+\/E+oz1 —a)"?
s (101)
for —a? <E=-1?<0,

and
shm@% 1 (VE+a] —ap)"F(VE+o +5)" (102)
chmo® = 2 WBE" ’ ‘
sh mo*, _ 1 (\/E+oc§ +oc1)"f$(\/E+ocf +o )" (103)
ch m@, ~ 2 «E" ’

ch m/2(0% +60%) = § x
y WE+2 —a)"*(NE+a2 Fa)"*+(VE+o2 +oc3)m’2(\/E+ocf +o,)"?

o (o9

for E=k*>> 0.
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m = 1/2@ is in general an irrational number. In all the above expressions, the bases of

the exponential function z" and z™/* are positive numbers with arg z = 0, i.e. 2" = "L,

The. expressions for the recombination probabilities defined by (87) and (88) can be

easily derived from the expression for dissociation cross-sections by employing the rever-

sibility rules (73) and (74). The probability P°(p, @,) tor the elastic scattering of free

particles as defined by (89) may be calculated with the use of expression (47).
Employing the result

L(p)
[My(n/2)]*

we deduce that P%(g, @,) can also be expressed in terms of elementary functions only.
We note that P°(¢, ¢,) calculated in the manner described above is not integrable over
pe[-o, P]

From the results of this section we see that for m being an odd integer, the expressions
for the cross-sections simplify considerably and, on the other hand, the scattering problem
is still nontrivial.

12

1
=1 (ch mO% —sin mg) (ch mO* +sin mg)

7. Cross-sections. The model with the hard core potential

According to the discussion o Section 3, when we apply the limiting procedure
Im @+ - 0
or, in other words, when -

0 - o for E<0and O% - oo for E>0 (105)

/
keeping ©_ as function of E for constant o; we obtain the quantities corresponding

to the model for Wthh the condltlon (4 1) remains unchanged and condition (4.2) is
substituted by (39)

In this section we apply this limiting process to the expressions for cross-sections ¢
obtained in Section 6. The resulting quantities are denoted &, and Gy

Employing (91)-(97) we obtain

du(=1) =1, | (106)

sh? m@* ~ sin? 'mn/v2
k? 1- : : , 107
Ta(k) = b2 m@ +sin? mn2  sh® m@F+sin? mn/2 (0

— 2m
Caiss(k?, @) = — sin® mn/2 sh mO* x

‘ n
- ) . 2
cos” me 1

X : : . : 5 108
«(cos mn ch mO*+sin me)?+sin® mn sh®> mO* ch mO* +sin me’ (108)

where
=0
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From (92) and (96) it is readily seen that

lim orearr(—lz) = lim arearr(kz) = 0.
Ol , @ +k—

In order to verify the flux conservation condition for £ > 0 we use the following
result which is derived by changing the variables in the integral written below in such’
a way as to obtain an integration from —oo to oo of a rational function to which the
method of residues can be applied.

Thus:

D
cos® mo

J [(cos mn ch m@* +sin me)*+sin® mn sh®> m@*] (ch mO* +sin m<p)
o

T 1

= i 109)
2m sh mO*(sh? mO* +sin® mn/2) (109)
Employing (109) we find
v 2

i s = “sin” mn/2 =
(K%, 0)do = 74 (KD) = = 1—0o,(k* 110
J\ adnss(k ’ ‘P)dfl’ GdlSS( ) Shz m@"+sin2 mn/2 ael( ) ( )

-o

in agreement with theunitarity condition above the break-up threshold for this model
and also consistently with the result, which can be obtained by putting @’; — o0 in (98).
- It is convenient to express the cross-sections as functions of the parameter

E+ad” '
A= v j—oc , where a=oa; (111)
—a

4 is a square root of the ratio of the incident energy of particle 3 to the binding energy
of the pair (1,2).

We have
0<i<1l for —a?<E<0 and 1>1 for E>0; (112)
1= Al \
@ mit 113
FIno— (113)
1[O+1)"—(A—1)"
hme* = - 114
S 2[ @-nr ] Sl

_ . A+1V" A—1\" -1
Gaie) = 1=T() = 4 sin® mn2 [(%) ES (m) 44 sin? mn/Z] LA
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When substituting m = 4/3 into (115) we obtain

B A—1 4/3 ] 4/3 A—1 8/371—1
() =3[ — fea e palilss -
adxss( ) ‘ (}.+1) [1+ (A"I‘l) + <'{+1> :I (116)

‘in agreement with the result obtained by Nussenzweig in Ref. [6].

We note that G, (4) is independent of the coordinate system used. Employing (115)
we find the behaviour of the elastic and break-up cross-sections for large values of the
incident energy:

_ m?2 1

2 l = R TS (

el )A_m 22 sin® mnf2 (117)
Ediss()‘) l_) 1- (118)

For m = 4/3 we have
Tad) = & A72,

a result obtained by Nussenzweig. ‘
The behaviour of the break-up cross-section for values of A in the vicinity of the
break-up threshold is as follows:

A—1\"
Oaiss(h) = 4sin® mn/Z(———) . - (119)
R 2

The total break-up cross-section considered as funcrtion of m for given @ has zeros for
m = 2n, where n is an integer; and maxima for m satisfying the equation

7/2 cos mn/2 sh mO* = O sin mn/2 ch mO*. (120)

The height of the maxima decreases for increasing m.

8. Concluding remarks

The number of the three-body models which can be solved exactly is very limited.
The review of the one-dimensional problems for which the analytic solutions in the configu-
ration space were found is given in Ref. [6]. The model considered here distinguishes
itself from this group of models in that the mass ratios and the strengths of the two-body
interactions are arbitrary. A full discussion of the results presented here will be interesting
both for illustrative purposes and for the examinations of the models with more realistic
potentials. It would be also interesting to-study parallelly the Faddeev equations for the
system described above.

The author is indebted to Professor J. Stecki for his encouragement and interest in
this work.
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APPENDIX

Here we collect some properties of the special functions M(z) introduced by Malyu-
‘zhinetz [2], [3]. In the quoted literature this special function is denoted by Y4(z).
The definition and integral representations:

0 ® : e
wior = || |- Gapommas) | - @0

n=1 m=1
i v dv
My(z) = exp ———Jdu th——-—— ], (A.2)
o _8450 o 40 cos (v—p)
1 chzs—1
- . - - d A3
Ma(2) exp[ 2jschn/2s-sh2¢s] > (A3)

V]
where the last integral defines My(z) in the strip |Re z| < 204-7/2. For z outside this
strip we make use of the relations (A.8)-(A.9) (see below). From the expressions (A.1)-
—~(A.3) we see immediately that "
’ My(z) = My(—2). (A.4)
The zeros and poles nearest to the point z =0 are
z = +(n/24-29) } & (A5)
z = +(3n/2429)
respectively.
For the values of @ such that 4®/n == n/m, where n and m are integers, and the
fraction n/m is irreducible, we have

i i cos 1/2a(k, 1) (=
M e )
o(2) —[ _[(cos 12[z/n+atk, l)]) for n odd,
k=1 I=1
m_ n__ a(k,l)+z/n
0 ,
My(z) = exp S u ctg udu for n even, (A.6)
k=1 I=1 a(k,l) B
where

' 21—-1 k-
atk, 1) = 72 (_ = 2__1)

n m

The function Mg(z) may be expressed in terms of the Barnes’ unsymmetric double
gamma function G(x, f) in the following way [17]
G(n[8® +1/2—z[AD, n[28)G(n[8D +1/2 + 2[4, n[2D)

= /4D .
Mol) = O GGnfsa+ 12+ 249, m2)GG[8D+ 12— 2[4%, 128)

A7)

where C is a constant.
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The solution of the wedge diffraction problem in terms of the functions G(a, p) hat
been given by Williams [8].

- It should be noted that the closed form of the Green function for the problem (7)
was also found and expressed in terms of the functions My(z) [18]. The tables of My(z)
were constructed by Zavadskij and Sakharova [4].

The most important properties of My(z) are:

Mg(z+2d)

MoG59) = ctg 1/2(z+7/2), _(A8)
My(z+m[2)Mo(z—m[2) = [My(n[2)]? cos nz/4®, (A9
Mo(z+P)Mof(z~B) = [Mo(®)]*Moy2(2)- (A.10)

The bahaviour of My(z) for large values of |Im z] is as follows [4]:

. N P N2 ‘
My(2) o ;=T->°° (cos E) Co, (A.11)
where
“ Inch i
4

Using the definition (A.3) we find, that

Mo(20-n2)  [n

- X, &>o. :
Ma(n)2) 20 e A.12)

In the calculations of the cross-sections we have to know the properties of the moduli’
of My(z). From the definitions of My(z) we see that
IMg(a+ip)| = [Mg(a—ip)| o, B real. (A.13)
Employing (A.13) and the functional relations (A.8) and (A.9) we find that

My(n[2+ia) | oL
_— ] h—, A.
Mo(7)2) o 414
M0 +1/2+i0) |?
SR T £ B (A.15)
Mo(7)2) 4 2
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