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Recoupling'formalism is applied for a direct transformation of higher-order operators

of the type (A B)" to the form of scalar products (O%)- OP). A brief review of examples
of these operators in the literature is given. As a speclal case, a very simiple form for electronic

spin-spin coupling >, os inside an LS term is derived. By extending the perturbational approach
developed previously, general expresswns for the contributions to spin Hamiltonians tensors

from .%” «s alone, as well as from %’ss and spin-orbit coupling jointly, are derived up to the
fourth order in spin variables. The results are applied to the case of Co®#(3d®) ions in tetra-
hedral symmetry. A quantitative discussion yiels good agreement with expenment for the
parameter a, and confirms our ealier conclusion on the importance of the fourth order axial
term F.

1. Introduction

In the past decade, there has been a tendency by numerous authors to introduce, into
Hamiltonians for single 1ons in crystals or magnetically ordered systems, varlous hlgher-
order terms of the type (A B) where 7 18 an 1nteger ‘The vectorial operators 4 and B can
represent the orbital angular momentum operator 1 or the spin operator S, as the case
may be.

At present, in crystal field and related theories, operator equivalents of the spherical
harmonics 0®’s are widely used for single-ion problems because of their convenient
transformation properties and the avallablllty ‘of Tables of their matrix elements.

Recently Thorpe [1], instead of (S $ ,)" used spin equivalents of the spherical har-
monics and deﬁned an inner product C,(S R ;) of spin operators at sites 7 and j. Any
product C,(S S,)" can be expressed by means of products (8 S,)” and consists of

a sum of the latter for n = 0, 1, ..., l. Thereby, the relations of [1] are of the nature
of a definition.
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In Section 2, on the basis of irreducible tensor algebra, we discuss a direct transforma-
tion of the products (j . f?)” to the form (0% - OP). In Section 2, moreover, we give a brief
review of examples of these higher-order operators found in the literature. Also, a very
simple form of electronic spin-spin coupling Hss within a given multiplet LS is derived.

For some transition metal ions, the contributions from ss to spin Hamiltonian tensors
can be of a magnitude comparable with the contributions arising from spin-orbit coupling
Jéso alone, because the former arise in lower orders of perturbation theory [2]. Therefore,
in Section 3, by extending the perturbational approach developed in [3 ], relevant contribu-
tions from #gs alone, as well as from #gs and #go jointly, are derived. The resulting
expressions, which are applicable to any symmetry of the crystalline environment and to
‘any 3d" ion with orbitally nondegenerate ground state, have hitherto not been reported in
the literature.

In Section 4, we apply the general expressions to the case of Co*+(3d°®) ion in tetra-
hedral symmetry site. The present calculations confirm our ealier conclusion [4] on the
importance of the fourth order axial term F and yield better agreement with the experi-
mental value of |a|.

Section 5 contains a discussion of the parallel method of Wybourne [5] for deriving
an effective Hamiltonian, in comparison with our method.

2. Higher-order operators

We consider the n-th power of a scalar product (4- ﬁ)". In other words, (4 - B)" is the
n-multiple product of single invariant products (j . i'?). Hence, we can apply recoupling
procedure and change the coupling scheme to that desired in any particular case [6].

The recoupling scheme most suitable to our aims is illustrated by the graphical
methods of Jucys and Bandzaitis [7] in Fig. 1.

Fig. 1. Graphical representation of the recoupling procedure
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The corresponding expression is written as follows:
(A(ln) . B(ln)) (A(ls) : B(ls)) (A(lz) i B(lz)) (A(h) . B(lx)) =

— z [A(ln) X ... X [A(ls) % [A(lz) % A(h)]dn)](fszx) “'](l(n—l) 321)](17) )

. [B(ln) X .. X [B(ls) % [B(lz) X B(lx)](ln)](lszn) _”](l(n—n o 321)](17) (1)

where £, denotes a sum over all intermediate {/;_;}.

In the case under consideration, a}l l",\= 1, and p runs over {0, 1, ..., n}. Eq. (1) ex-
presses the direct transformation of (4 - B) to a sum of products of p-th rank tensor oper-
ators 0@ =1[  ]®. Any single operator [4X ... x [Ax A]P]? = Q¥ is at the same
time a spherical tensor operator of the variables (Ao, {,,), where 4; are the spherical com-
ponents of a vector operator A. (In this paper, we adopt the basic definitions of tensor

algebra in accordance with Ref. [7].)

Hence, using commutation relations, we can transform the 0®s to other angular
momentum tensor operators, as done by us in an earlier paper [3]. We had chosen, among
others, the operators 0,‘1") (jz»Jj) tabulated in [8]. In order to maintain the same phase
factor as in [7], we introduced new operators 0", defined as:

0P = o, @

We established [3] the following transformation relations for single particle operator
products

Q(p) — [X(I)XX(I)](p) — Olpbfx?)

1 . 2 .
“o=:/T3X3 % = = \/—l, 0‘2=\/§ (3)‘
and
gP = [XDx Y@ = g OP
b= X1l B i o= [ ¢
lv_2'\/i§ - s 2 = i 3 = 5: )

where X now stands for 4 or B, and X* = X(X+1), while 0% = X
Using Eq. (3) and (4), we obtain from the general expression (1) the desired ditect
transformation formulas as follows:

(4-BY = 1 4B~ 1 00 - 05+ 3 09 - 07, ®)
(;1 E)s = — lA*B*+ 1[3A*B*—A*—B*+2]5f41) . 59)—
— 4 0(2) (2)+ 0(3) 0(33). (6)

Terms of powers higher than 3 are rarely found in the literature.
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The higher-order operators of the type under consideration fall into the following
two groups:

1. Isotropic exchange interactions,

2. Terms (L- S)* like spin-orbit coupling.

1. The most general isotropic exchange interaction given by Thorpe [1] is:

# =3 IDCS:- §)). @

ijn
On comparing our Eq (5) and the corresponding one of [1] it is clear that 0P - 5(2)
identifies with CZ(S S) and the conveniently- defined spin spherical harmonics C, ,,,(S)
equal our 0y’s.

In the 11te1 ature, one finds three different approaches to higher-order exchange lnter-
action terms. Some authors simply incorporate the biquadratic exchange term ](S S)2
into the Hamiltonian [1] [9]. Others have attempted to explain the existence of these
hi%her:order terms by perturbation theory calculations on assuming the usual exchange
J(S - 5) to be the zero-order term [10].

Others have treated the n-th order exchange terms as allowed by symmetry [11],
or on the basis of Schrodinger’s generalization of the Dirac permutation. operator P;;
for spin S =} to cases of arbitrary spin S [12]. '

- 2. Terms (Af, - S)" like spin-orbit coupling occur in the literature in the three following
problems:

a) For the description of the spin-orbit splitting inside an orbital triplet T, of a 3d"
ion [13].

b) Similarly to case (a), Karayanis [14] inroduced for the descrlptlon of the ground
term of a 4f" ion an effective spin-orbit Hamiltonian Hy = Z,,l,,(L S) ,with 1 <n <<2S.

c) The effective electronic spin-spin coupling inside Va‘given LS term, as is well known,
can be written as [15] [3] [16]: '

Hss = —ol(L- 8+ 3(L- 5~ $LS]. ®
On inserting Eq. (5) into Eq. (8), we obtain: _
Hss = — % 00 - 09 , ©

The resulting expression (9) is very simple in form and obviously more convenient for
further calculations than Eq. (8). In the same way, one can simplify the quadrupole inter-
- action term in atomic spectroscopy [16] [17].

3. Electronic spin-spin coupling contributions to spin Hamiltonian tensors

We introduce the following brief notation for the matrix elements of orbital angular
momentum operators:

[2 = [0/0P] and L) = [«|0I6], (10)

where 0" equals L if the operator L is written in spherical coordinates [7].
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For details of the perturbation theory formalism and the mathematical techniques,

we refer to [18] and [3] respectively. N

On recoupling the scalar products occurring in the crude perturbation expressions
and applying the symmetry predictions [3], we obtain the relevant terms arising from the
consecutive orders od perturbation theory. We write the general spin Hamiltonian derived
in this manner in the following form:

# = BP - (~)§2),+B(4) - 0P, (11
Below, we derive expressions for the contributions under consideration to the tensors
B® and B®.
A. Contributions from #g alone

1. First order of perturbation theory:

1B = 3 oI} (12
2. Second order:
4 z : 1 )
2B(2) - _ §,}’202 ) A_ Ta(Z), (13)
: 4 1
"BY = = 5 740° E - LY 14
where
TV = [0 LF]®. (1)

The values of the coefficients 7, are given in Appendix A. The explicit formulas for the
components of the tensors T are straighiforwardly obtainable from the Tables of [19]
for decomposition of the product D® @ D™,

Using the rough values (4/0) ~ 102 and 4 ~ 10*=10*cm [2], one can predict
that the contribution 2B is negligibly small in comparison with the usual B® of order
(42/4). On the other hand, 2B™ can be, at the most, comparable to the usual B, which
is of order (44/43). For this reason, no higher contributions of the type A will be consid-
ered.

B. Contributions from #g and #g jointly
1. Second order of perturbation theory:
2pr(2) 2 P 1 (2) 7(2) |
B =-§5ng A—{U“ + U2}, (16)

o

where

U = X IBID; UL = [12 x 19)). (an
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For the definition of the coefficient 8,, see Appendix A. The contribution 2B"® is about
one hundredth of B, :
2. Third order:
We consider only the terms of order (glz/Az) as only they can be of a magnitude
comparable with B® ~ (14/43).
. We obtain, among others, the following term:

E o Aﬁ (1) (1)) (L(alp) g 0(1)) (L(ng . 6(2))_'_

ap

(LY - 0D (12 - 0@) (LY - OW) +
+(LE - 0®) (1) - 0W) (I8 - O} (_18)

Any of the terms in Eq. (18) can contribute to B®, but this part is irrelevant for our pur-
poses, since it is negligibly small. On applying the commutation relations for spin tensor
operators [20] to a single product from Eq. (18), for example to (4®. 0®) (BY - 0M),
one obtains a product with inverted sequence (B - OW) (4@ - 0@) plus a term linked
with the operator 0'® alone. The part 0'?, inserted into a triple product in Eq. (18),
cannot lead to any term of fourth order in spin variables, e. g. to a term linked with 0.
Thus, one is justified in changing the sequence in any triple product in order to obtain
a more convenient form of Eq. (18). We choose a form like (1) (1) (2).

Finally, we obtain the following expression for the third-order contribution to the
tensor B@:

2,
3p(4) __ 2 1 1 2)q(4 (1 (1 2)7(4
B =t 3“2?492 2 ( (033 (aO)a L( )]( ) [LOL aO)a L(aa)]( ))

a

) e 6 1 1O+ 1 51800 09
a#p p ‘ )
where the symbol [ , , 1“ has the following meaning:

V@ = [IP, 1D, I = [[IP x LP]® x [P, (20)
The coefficient a, is given by Eq. (3). The explicit formulas for cbmponents of the tensors
V@ are to be obtained by a stepwise procedure (D™ ® D) ® D?) from the Tables
of Ref. [19]. In Appendix A, we give only the tensor components ¥§" and V) relevant
for the cubic and tetragonal symmetries.

4. Application to Co3t (3d9) ions in tetrahedral symmetry

Previously, we derived general expressions for contributions to spin-Hamiltonian
tensors from g, alone [3] and applied them to the case of Co3+(3d€) ion in garnet struc-
ture [4]. The conventional fourth-order axial term F was shown to be relevant, but only
poor agreement with the experimental [21] value for the parameter ¢ was achieved [4].
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Below, the contributions to the tensors B® and B from #gs, as well as from #gg
and Ao jointly, are derived in the explicit form for the case under consideration. The
matrix elements L{y for Co®* ion in S, symmetry were evaluated in [4], whereas the L2
are evaluated in Appendlx B of this paper. We illustrate the possible “transfer processee”
in- Fig, 2.

Ey, Ep

Bn

A

(2) (1)
Laﬁ Bg thﬁ

Fig. 2. The possible transfer processes within the states arising from a 5D term in tetrahedral symmetry

A. Contributions from %A’ss alone

1. ,IBE)Z) = +29 (21)
9 4 3
2. ZB(Z)———Z——-—
0 “\a, "4 (22)
3 ZB(4) 12 92 (i _ _1_
' Az 4,
12 1
2p@) L 22 ©
w=T 000 4,
12 1
B(4) = — 2% 23
J0¢" 7, (23)

where 4; = E;—Ejp,, and u, v are coefficients arising by diagonalization of Q?CF of S, sym-
metry within BY and By states [4].

B. Contributions from #gs and #s, jointly

6
1. 2B6(2) = QJ,A_E 24
12 12 1 2 3
2. *B§Y = 9,12( tog =
35 Agdy Ay A4y A:

Fi 2 1
3B = —6 222 -
e YU\ a T A

2 2 1
B, = -6 22’
‘ V¥ "\ 14, Y 22) (25)
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All the other components of the tensors B and B vanish identically, since they are not
allowed by the symmetry S,. ‘

From the optical data of [22], the following values were taken [21] [4]:
A = 8.300 cm™; Ap = 5.200 cm™; 4, = 1000--2000 cm~*, while 4 = —110 cm™* and
A4 =1.200 were assumed for numerical discussion [4]. )

For a lack of g-value for Co3* ion, the value p = +1 cm™ is taken as for the isoelec-
tronic Fe2*(3d®, 3D) ion [15] [16]. The relations between our B{*"s and the conventional
spin Hamiltonian parameters are to be found in [3].

The moast important contribution to the second-order parameter BS is !B =

= +2 cm?, which is equivalent to D = —3 cm~'. The remaining ‘B’ are negligibly
small. .
: ‘ TABLE 1
Improved values of the parameters B®, B® and a, F (in cm™) for Co* ion in garnets
Ay cm™? ~ 1.000 1.200 2.000
2B (g?) —0.00010 —0.00004 +0.00007
3B34)(912) -+0.00051 --0.00068 --0.00101
B(()‘l) L —-+0.00041 -0.00064 —+0.00108
2B"(0%) —0.00143 —0.00119 —0.00071
35(0)(o1) ~0.00443 —0.00372 ~0.00234
Bﬁ‘” —0.00586 —0.00491 —0.00305
ass+Ass—so —0.147 -0.123 —0.076
aso —0.048 —0.040 —0.0251
a —-0.195 —0.163 —0.101
FogtFosso ) 40.230 +0.199 +0.139
Fso -+0.113 -+0.103 +0.0841
F --0.343 -+0.302 +0.223

1 Values from Ref. [4].

* For a quantitative discussion of the parameters B®, we neglect the mixing of states B}
and B°. Then, u=v=1and BY} = BY, = B{P [4]. The values of the fourth-order
parameters are listed in Table I. They permit the following conclusions:

1. The terms of order (gA2) arising from the third order of perturbation theory contri-
bute more strongly to the BS? and B$? than the terms (0?) from second order of theory.

2. #ss coupling alone, as well as # g5 and H o jointly, contribute more strongly to
B but rather slightly to BSY. B

3. The contributions of both types considered in this paper are considerably larger
than those arising from s, alone. Hence, the present calculations provide a reasonable
refinement of our earlier work [4].
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4. Our theoretical value @ = —0.163 for 4, = 1.200 cm™* is now of the same order of
magnitude as |a| = 0.66 cm™* obtained from EPR [21]. Agreement between the two
values is now- better.

5. The present calculations confirm the importance of the fourth-order axial term F
and show that the omission by previous authors [21] of the F term when fitting the spin-
Hamiltonian to experiment was, at the least, unjustified.

5. Remarks on the method

Recently, Wybourne [5] developed ‘a general theory of effective operators based on
_perturbation theory and tensor operator algebra. It may be worth while to compare the
two methods.

In our method [3], we deal with the recoupling of products of orbital operator matrix
elements (whlch are tensors) and spin tensor operators The occurrence of such products
was due to the 1mp1101t structure of the pertulbatlon problem considered, without a necessity
for any additional assumptions.

On the other hand, instead of the “real” perturbation operator v, Wybourne [5]
introduced by definition certain effective perturbing potentials V,’s. Any V,5 was re-
stricted to act only between given zero- -order states {Aa| and |Bb). Hence, Wybourne was
able to apply the closure theorem for a complete set of states to the numerators in the
perturbation exprescions. That, in turn, ted to a product of operators VisVac ... Vau
aione, playing the role of an effective interaction within the zero-order states {|4a )} of
the ground energy level. It was only at this stage of the theory that Wybourne used the
recoupling formalism for transforming the product operator VigVac ... Vyu to a 51mp1er
form.

‘ Thus, our method is not a special case of the more general method of Wybourne,
despite the similar mathematical techniques applied in both. -

6. Conclusions

We have considered, firstly, a direct transformation of higher order operators. Then,
with the form obtained for spin-spin coupling Hgs, we derived general expressions for the
contributions to spin Hamiltonian tensors involving Wss The utility of this extension of
our previous calculations [3] [4] is proven by the quantitative results derived for a Co3+
ion’in garnets.

However, further extension of our method suggest themselves. The following appear
to be the most relevant:

1. Consideration of higher-order Zeeman terms of the type (HS?3) which can be of
importance-in theinterpretation of EPR and ENDOR spectra in some cases [24].

2. Modification of the model to treat ions with orbitally degenerate ground states.
This should lead to a two-; or three-dimensional spin- Hamlltoman for E, and T,, ground
states, respectively [18] [25]

We intend to deal with these problems in future papers.
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APPENDIX A
1. We establish only the relevant coefficients needed in Eqs (13) and (14)

[6(2) X 6(2)](k) — ')’ka(k)
6
V70

In Eq. (A1), we proceed as described in Section 2 of this paper. Apphcatlon of the isomor-

phism of the solid harmonics C® and O® [8] by using the expression Eq. (4-5) in [33]for
[C(") CM]® = 4, c® is not allowed because the C®’s do not obey the usual relations
for the spin operators:

1
V2= \/ﬁ(41(1+1) 15);  ya = (AD

~ ~
3

$-5 - S(S+1) and Sx8 = iS.
2. In Eq. (16), we need:
| [0 x O] = 5,0®  and [(3(1)2 0@ = 5,09, (A2)

8, is expressed as the combination:
il i 3
2'._-*‘/32—_'—’\/_ (A3)

whereas J§, was calculated separately, and we found that §, = d'5-
3. In Eq. (18) we need:

[[OW x 0@ x DD]@ = 0,y,0%. (A4)
-4. With the tensor ¥® defined as follows:
p® = [[XPx Y@ x (2], (A5)

its components relevant for cubic and tetrahedral symmetry are given explicitly as:
1 _
Vs = \7% {X41Yis Lo+ X Yo Ly +6(Xo Yo+ X1 Y+ X4 Y- )Lo+

+2 2 (X1 Yo+ XoY )Ly +(X - Yo+ XoY_ )Ly 1)}

V¥ = X4y YysLys (A6)
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APPENDIX B

The following definition for a tensor orbital opzrator is adopted: 0P =X, OPel!
and its matrix elements L{} are evaluated using Eq. (2) and Tables [26] [27] within the
states arising from 5D term in tetrahedral symmetry (Table II).

- TABLE II
B, A B, e <o E,
3 = N

B, —35® = 5 @Al 0 — 33l | +3y3wel]

3 i . N 3 o - -
A4 | - g el pey + 3¢} — GG -pel |l — e
Ba | 0 - % CA N CE AT +iyIpEE | g3 el
E | 3y - @ 133012 s 3V6ef
E» |  —1y3 pe + e i3 y3pe +3/6e | +3e
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