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EXCHANGE ENERGY OF BIAXIAL FILMS
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The dependence of exchange energy on the angle & between the magnetization vectors
of the particular constituents of the film has been found for biaxial films. This dependence is
E,4 = const & for the whole range of & where the constant is a function of the film thickness
and the angle between the easy directions of the particular constituents.

1. Introduction

The knowledge of the dependence of exchange energy on the angle o between the
magnetization vectors of multilayer systems in ferromagnetic thin films is of much use
in the determination of the total interaction energy [1].

Goto and Yelon [2,3] postulated this dependence to be of the form E, = const X cos o,
which in case of small angles (strong coupling) yields E, = const X 2. Lubecka and Maksy-
mowicz [4] have found the asymptotic expression E, = const x a2 for small angles
below 2° to be valid. The present paper gives the results of numerical calculations made for
biaxial system with the angle &J between the easy axes equal to 90° nad 60° for arbitrary
values of the angle « which depends on the magnetic field applied. The results obtained
were: the relationship between E,4 and « in the form E, = const o2, and the distribution
of the magnetization vector in the film.

2. Calculation of the exchange energy

The calculations of the exchange energy have been made under the following assump-
tions. The z-component of the magnetizations vector M, =0, i. e. the magnetization
vector lies in the film plane, there is no textute, the spacimen is policrystalline, the
thicknesses of the two layers are d; and d,, the uniaxial anisotropy constants are Ky
and K2 and the two magnetizations are equal.

* Address: Zaktad Fizyki Ciala Stalego, Instytut Metalurgii AGH, Mickiewicza 30, 30-059 Krakow,
Poland.

o1



92

In such a case the total energy density 1s given by:

d 2
s = Kyg(p)+A (d—f) , 0

where the angle ¢ is defined as in Fig. 1.
The function g(g) is:
8(p) = —2hcos ¢ —1/2 cos (T-2¢)

and consist of a term which describes the uniaxial anisotropy energy density and another
term which describes interaction with the field, Ky is the uniaxial anisotropy constant,
and Ky = K = Kj, h is the external reduced field 4 — H/Hy, H; = 2Ky/M and the
magnetic field is directed along the x-axis, 4 is the exchange constant.

We assume that the magnetization distribution is uniform in arbitrary cross-section,
i e, 9= g(2).

The Euler equation becomes the form:

Ky dg(e) d (de
— ——-2—(ZL) =y,
A dy dz\ dz @
or, after transformation
Ky dg(e) d[(de\?
4 az @|\\a) |7 S
After integration Eq. (3) we obtain
Ky de 2
" g(p)— (Z) = const. 4)

In the next stage we shall discuss the case in which the magnetic field is directed along
|

d. .
the x-asis. Then ¢(—2) = —g¢(2). Taking as boundary conditions @ 0 where d is
. z=d

the thickness of the film, and substituting

@(d) = @o and g(g,) = g
we obtain that the constant in Eq. (4) can be expressed in the form

C t = —
ons .
{ 8o

Eq. (4) can be written in the form
d Ky\'?
=~ (;) EORFARE ®)

2

K .
and after substituting n = (7;—1) z and integration of (5) we obtain

® a
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The value of @, can be determined from the relationship

@0

dé
— e SN 7
"o j (6O -] ?

K.\ 12
o = <‘Zq) *d.

Eq. (6) permits the distribution of the magnetization vector in the film to be deter-
mined, while from the expression (5) we can calculate the dependence of the exchange
energy on the angle @ and further indirectly using the relationship

where:

{cos @) = cos /2 ®

AN @< -,

Fig. 1. The magnetization vectors in a thin film. The (x, y) plane coincides with the interface of both
constituents: the x -axis in given by the direction of mean easy axis, the angle ¢ = ¢(z) determines the
direction of local magnetization, and M;, M, are the mean magnetizations of both constituents
we can find the dependence on the angle «. Zhe mean magnetization in the direction of

the applied field (for field directions along the x-axis) is

M) = Mcos @). (82)

On the other hand «/2 is the angle between the mean magnetization of one of the con-
stituent of the double film and the x-axis (Fig. 1), and the resultant magnetization is

(M) = Mj,cos a2 (8b)
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The comparison of Eqs (82) and (8b) gives Eq. (8). The mean value of exchange energy as
a function of the angle for fixed & (Fig. 1) can be obtained from the expression

(KU)_1<EA> = {g(®)> — go» ®
where:
1 f e
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On the other hand the mean value of cos ¢ is calculated from the expression

Po
1 - COS @
{Cos ¢y = — | ————77 do. (11)
’ o J [e(p)—g0]'"*

3. Results

The calculation have been made for permalloy (Ky = 10° erg/em®, 4 = 10-° erg/cm)
with the use of IBM 7094 computer. Figs 2 and 3 show the distribution of the magnetiza-
tion vector inside the film for the angles & = 90° and &J = 60°, for various thickness
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Fig:2. Distribution of the magnetization vector in a thin film for @ = 60°. a) 7o = 0.5; b) 70 = 1.0
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values and fixed external field. The obtained cuives of ¢ vs  dependences usually differ
from the assumed distributions of step-function form, for which magnetizations in
individual layers are uniform. Measurement of the real distribution of magnetization in
two-layer film is difficult. We can only calculate the expected diffraction contrast for trans-
mission electron micrographs for different proposed ¢(y) distributions and then by
comparing it with obtained electron micrograph we verify the individual models. One
should expect, that magnetization distribution that differs from the usually assumed
step-function form influences on the threshold curve, the torque curve, the susceptibility
and histeresis loop. In this paper the mean magnetization was calculated for a distribution
founded.
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Figs 4 and 5 show the dependence of In {100E,» on In o for & = 90°, and 60° and for
flo = 0.5, 1.0, 2.0. As it can be seen from the figures, the relationship is linear with a slope
of (2F0.06). The above resuls indicate that the mean exchange energy is proportional to «
squared. The proportional factor is strongly dependent on 7, (film thickness) and practic-
ally does not depend on &, for & = 60° and 90° and for 1, > 1 which corresponds to the
thickness d = 3160 A.

The model presented in this paper is valid in the entire range of . In particular, the
result obtained is in agreement with the results obtained in Refs [2, 3] in case of strong
coupling, i. e. small values of . It is however in disagreement with the results obtained
in Ref. [4] where the dependence on « was presented as a2, since the latter relationship
has been derived as an asymptotic form for small values of « estimated as smaller than 2°.
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Fig. 3. Distribution of the magnetization vector in a thin film for @ = 90°. a) o = 0.5; b) 77, = 1.0
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Fig. 4. Dependence of In <100E4) on In for @ = 60°. a) 70 = 0.5; b) 70 = 1.0; ¢) 7o = 2.0
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Fig. 5. Dependence of In {100E4> on In« for @ = 90°. a) 1o = 0.5; b) 170 = 1.0; ¢) 7o = 2.0
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