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EFFECTIVE MAGNON HAMILTONIAN FOR ITINERANT-
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The method of the effective magnon Hamiltonian, formulated in the preceding paper,
is applied to the discussion of some problems involving magnon interaction in. the itinerant
electron model of ferromagnetism. The model of a single narrow band described by the
Hubbard Hamiltonian implemented by the energy of dipolar interactions of itinerant elec-
trons is consniered First, the four-magnon relaxation processes are discussed. Second the
influence of magnon interaction on the low-temperaturc spontaneous magnetlzatlon is
estimated. o

1. Introduction

In the preceding paper [1] (referred to as I hereafter) a method of an effective magnon
Hamiltonian was described. The method is particularly well suited for studying magnon
" relaxation processes, since it enables us to use the well-known calculation procedures
developed for localized-spin ferromagnetics.

The effective Hamiltonian allows us to discuss separately different relaxation mecha-
nisms and to find the resultant inverse relaxation time as the sum of inverse relaxation
times for different processes. In [2] the relaxation time for 3-magnon confluence processes
was calculated. In the present paper we shall discuss 4-magnon relaxation due to Cou-
lomb and magnetic dipolar interaction beiween magnetic electrons.

2. Hamiltonian

We shall consider the case of strong magnetic field H, i. e., H > 4nM where M is the
magnetization. In this limit the terms L,8,8_,+ h.c. in the effective Hamiltonian (1.16)
(the formula (16) of I is here referred to as (I.16), efc.) can be neglected and the energy of
long wavelengths magnons E, simplifies to Eq = K, = E, where E,is given by (I.21). The
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terms like CppB," BBy in the total effective Hamiltonian (1.16) are irrelevant for our
present problem. Therefore, the effective Hamiltonian for 4-magnon relaxation processes
is (the notation is the same as in I)

H =Y EB; B+ kkz 2 Bas B - BiBr +
q 'q

+ 2,;”'(qu'.,"ﬂ;'ﬂe+q~ﬁ.,ﬁqrﬂ.,~+h.<=-), o))
where the magnon energy E, is calculated from the equation (I.3)
IN’lzk:nk(sk+q—s,‘+A—Eq 1=y, [#))
and
Gixr = K[Be+o [Be-o [, BT, BETIDs &)
Farwr = & LBosg+a [[[5#, B31, B2, B 1D @

Here <...) denotes the average over the ground state and # is the Hamiltonian (1.13) of
the system of itinerant magnetic electrons, including the Coulomb and magnetic dipolar
interactions. We assume that in the ground state the spin-down band (spin-down elec-
trons have their magnetic moments parallel to the magnetic field direction) is partially
occupied whereas the spin-up band is empty, i. e., we consider the case of a strong itiner-
ant ferromagnet. m, denotes the ground state occupation number for spin-down electrons.

Simple calculations lead to the following expressions for the coefficients of the 4-mag-
non terms: '

Gl = H(Glo+ Gl + G * 1+ G 4+ 9) (52)
where
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1 . *
—iN~ ZD —p+abpir- q,p—qbp'+q+k,p’+qbp+k'—q,pbp’+q+k,p’"pnp

-1 * *
—3N Z Dp’-P—q+k"bp’+k',P'bp+q+k,p+qbp'—q+k’,p'bp+k+q.pnpnp” (Sb)
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and
F

qa'q"’

= % (qu’q" + F4;1"41«' + —F—q'q”q +FygqtFogrg+Fyo (6a)
where

—_ o1 *
Fogqr = BN Y bisgra +arktaraDera kb + gk birqrq +ar ke +
P
* -1 *
+B;N Z bk’+q+q'+q”,k’+q+q’bk+q',kbk'+q,k'bk’+q+q'+q”,k’nknk' -
[
-1 ] *
—N Z Bk’—k—qbk+q+q'+q”,k+q+q'bk'+q’,k'bk+q,kbk+q+q'+q",knknk’ -
o

—N7! hzk' Bk'—k+q by igra +q” w+a+a D roabisa, kbk'+q+q’+q" 20778 (6b)
All the symbols used here are defined in L.

The two-body interaction term in the effective Hamiltonian (1) proportional to the
matrix elements G%. is determined by electrostatic as well as magnetic dipolar interactions,
whereas the one-in and three-out interaction term is of purely dipolar origin. It is con-
venient to divide G& into the electrostatic 'y, and dipolar P, contributions

Gl = The+ Piy. @)

T4, contains those terms in (5b) which are proportional to the Coulomb integral I, ¢f. Eq.
(I1.12); the dipolar terms belong to Pg.

Calculation of the coefficients (5), (6) of the effective Hamiltonian for a realistic band
structure would be an extremely tedious task. We confine ourselves to the case of para-
bolic shape of the band taking for the electron energy & = h?k*2m*.

The coefficients G and F, - were calculated as expansions in powers of wave vectors.
The electrostatic contribution I'%,, was calculated up to the terms of the fourth order with
respect to the wave vectors 7, k, K. The dipolar terms P&, and F,yq, which are much
smaller, were calculated in lowest order with respect to the wave vectors and in this approx-
imation they depend only on the wave vector directions.

It is covenient to expand by 43, given by Egs (1.5) and (1.6), in the following form:

brran = byoll—24d - k+12(d - k> —
— 3@ P +aHa B+ ] (8)

where
b,o = N)" (1= 35 x2kiqa*+..) )

32
Xy = hz/[m' (A —E,+ il——* q2>], (10)
2m

and
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Here, n denotes the number of electrons per atom; N is the number of atoms; kj is the
Fermi momentum and & = h2kZ/2m* is the Fermi energy for spin-down electrons;
A = 2ugH + nl is the energy needed to reverse the electron spin from down to up direc-
tion; E, = 2ugH + ag® + ... is the magnon energy, which appears as the solution of
equat1on (1.3). The magnon energy parameter o could be expressed in terms of 4, kr and
m*. However, the Random Phase Approximation taken as the basis for our treatment is
insufficient for accurate calculations of «; also, the effective mass approximation is too
crude for quantitative results (see e. g. [3]). It is therefore reasonable not to determinie o
from approximate treatments but, on the contrary, to consider « as an independent para-
meter which can finally be estimated from experimental data.

Straightforward . though laborious calculations yield the result, correct up to the
terms of the fourth order with respect to the wave vectors,

Iy, = £ IN"'pk;? {Tc- P

T [k 6 .
+Xo[ (as—F -1+ Sn)(k2+k’2)(k-k’)‘+
+(1= 320 (K2 - KK - -2k - ) (K- 3+
1+ S m) (K- gk @) k- F)~ $2nq’(k-B)+
+ 11— Sk - 1 (1— $8n) (K- k)Z]} (1)
where
Yo = h2|[m"(4—2p5H)] = h2[(m’4) and 4 = eg/A.

The dipolar contribution to G%. is in lowest order

Pl = — 3 C4d,+4dy g+ dyy g+ di— g+ di+dy) (12)
where
d, = 1-3(a.l9)* (13)
and "
= (2n/3)pz/V . (14)
Similarly,
Fopgr = —Cfy+fy+1y) 1%
with
Iy = (@.—iq,)’[q*. (16)

It is interesting to note that the dipolar part of the effective magnon Hamiltonian (1)
in the limit of long magnon wavelengths appears to be the same as the corresponding
part of the magnon Hamiltonian for the localized-electrons ferromagnets.
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.+ 'We shall illustrate applications of the effective Hamiltonian considering, first, four-
magnon relaxation and, second, the effect of magnon interaction on the low-temperature:
spontaneous magnetization.

3. Four-magnon relaxation

The magnon relaxation time can be calculated from a linearized kinetic equation by
the procedure used long ago by Akhiezer [4] (see [5] for a modern description).

The four-magnon scattering processes as defined by the effective Hamiltonian (1)
consist of two-in and two-out processes, determined by the terms proportional to G,
and one-in and three-out processes determined by F,,-. It is convenient to describe the
system in terms of eigenstates of the magnon number operators 8 f,; let N, denote their
eigenvalues or magnon occupation numbers.

The transition probability per unit time, as calculated from the golden rule of the
first-order perturbation theory, is for two-in and two-out processes

W[(Ni+g Ni—gs Nio Ni) = (N g+ 1, Ny _g+1, Ny—1, N —1)] =
= (27/1) [4G*(Ni+g+1) (N -+ DN N %
X 5(E,,+q+Ek,_q—-Ek—Ek,). a7
The transition probability pér unit time for oné-in and three-out processes is
WI(Ng Nyty Ny Npswgrag) = (Ng—=1, Ny =1, Ny =1, Ny oy g+ )] =
= (2n/h) 16F 1y |* NNy N AN atrq +qr 1) X

x 5(Eé +E,+ Eq” "'Eq+q'+q")' (18)

The net rate of change of the magnon occupation number N, is given by the kinetic equa-
tion

dN,
d— Z(2ﬂ/h) 4GEHH{(Ng+1) (N im g DNN, —

Al = NN i+ N+ 1) (Nie + D}(E; + Epr 4 g— Ex— Ep) +
+ 3 ;A(2ﬂ/h)l6quk'k~|2{(Nq+ D (Ni+ 1) (N + DN g —

— N NiNu(Ngiise + D}O(E, + Ex+ Ep — Epsrri)+
+3 Z(Zn/h) ]6Fk,k',q—k—k’| {(N+DNN N, mgo—

. q(Nk+1) (Np+1) (N~ k+1)}5(Ek+Ek +Eq —k- —Eg)- (19)

Lét N, = [exp (,BEk)— 17! be the equilibrium value of N, (8 = 1/ksT) and let the magnon
system be not far from equilibrium, i. e., let Ny— N, be small. Then we can linearize the
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right-hand side of the kinetic equation (19) with respect to deviations from equilibrium,
N,—N,. The linearized kinetic equation takes the form

dN, = ’ —
7 N —(N —Nyp)— Z (-.) (N—Ny). 20y

The inverse relaxation 1/t, for magnons of wave vector q can be conveniently divided
into the contribution from the two-in and two-out processes, 1/'r(2 2 and the contribution
1/1}11 *3) from the one-in and three-out processes,

Yz, = 132 + 178, @1)
These two contributions, as derived from (19), are "

1/1(2,2) Z (167t/h) |G% lz{ﬁk.,.kr_q(ﬁk-l'ﬁk"l'l)_

— NNy }0(Eg+ Egsio—g— Ex— Epo), (22)
1z = 15D 1, (23a)
The first component of Eq. (23a) comes from 4-magnon confluence processes,

1 = kzw(%”/h) \F e {N Ny —

~(Ny+ N+ )Ny 1411 }0(Eg+ E+ B — Eg s i) (23b)
and the second from 4-magnon splitting processes

1/‘5;(1’3) = Z (36m/h) |Fk,k',q—k—k'|2{(ﬁk+ 1) (N +1) x

X(Nq kit 1) =N NN, g~k JO(Ex+Ep+E;_i_1o—E,). 230)

1 /T(l -3 js determined by dipolar interaction alone, whereas 1 /1:(2 2 is due to electrostatic
and dipolar interactions. For very small g dipolar contributions to the i inverse relaxation
time dominate over the exchange ones. In the limit g = 0, 1/7, is purely of dipolar origin.
However, for large enough g the scattering processes due to electrostatic interaction are
much more efficient than the dipolar ones and 1/7, is then practically determined by the
electrostatic terms.

For simplicity we consider the case of strong magnetic field, H > 4nM. Consequently,
we can neglect dipolar corrections to the magnon energy and take for long-wavelengths.
magnons the simple formula E, = 2uzH + ag® for the magnon energy.

a) Relaxation time for g =0

For g = 0 the energy conservation condition expressed by the Dirac d-function in
(22) reduces to O(E, +Ek+k E,~E,) = (1)22) 8(k- k'). The Coulomb contribution
Iie k)q-o to (G k)q_o is,in the first approximation with respect to the magnon wave vec-
tors, proportional to (k- k'), as is seen from Eq. (11). Therefore, in the first approxima-
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tion I'y¥8(K - k') vanishes and the relaxation of the uniform magnons g = 0 is determined
solely by dipolar interactions.

Here we encounter a difficulty of the method of the effective magnon Hamiltonian.
From general considerations, namely, from the fact that the Hubbard Hamiltonian com-
mutes with the total magnetic moment of the system of itinerant electrons we expect that
the uniform magnon should not be damped by interactions originating from the Coulomb
part of the Hubbard Hamiltonian (I.1). The effective Hamiltonian with I} given by Eq. (11)
preserves this property only in the first approximation. Some of the terms in Eq. (11)
of the fourth order with respect to the wave vectors would lead to a spurious contribution
to the inverse relaxation time of uniform magnons. Fortunately, this spurious contribu-
tion rapidly diminishes with decreasing temperature, roughly like the fifth power of
temperature, and at sufficiently low temperatures becomes negligible as compared with
the dipolar contribution.

Standard calculations give simple results for the two components 1/$*? and 1/z4+® of
1/zo (for simplicity we assume that the sample is an ellipsoid of revolution with the sym-
metry axis along the magnetic field direction):

1 /124 - -
e = 36";(? +"’z) gh™ Y™ (es T C0) 4

where d = 1—-3N, (N, is the demagnetizing factor) and

fle) =

Cee 8§

dx [ dy{(e"* =) (e - )T+
]

+(EP DT ] (- )T (E - )T (25)

with & = 2ugH[kgT.

For g = 0 the 4-magnon splitting processes are forbidden as they fail to fulfill the
energy conservation condition. Consequently, 1/t5*® = 0. 1/z§® is determined by
4-magnon confluence processes and is given by the expression

2
1 = 1 = = ™ 0T e6) @6)

where

(s)-—jdx dyb(xy—¢) P !
8 y y & Xy ez+x_1 ee+y__1
0 (V]

1 1 1
- ee+x___1 + es+y_:1 +1 e3a+x+y_1 b (27)

0(x) is equal to 1 for positive x and vanishes for negative x.
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Calculation of f(g) is simple. It can be represented by the expansion

fle) = z ;11—2 e "™, (28a)
n=1

Except at extremely low temperatures, for values of the magnetlc field strengths
within the experimentally accessible range & = 2upHJkgT is very small as compared with
unity. For ¢ < 1 we can replace (28a) by a more convenient expansion

fe) = % +eln (1-e™)- Z ;113 (1=~ (28b)
n=1

Calculation of g‘(g),a_is cumbersome. In a crude approximation we hax;e for ¢ = 0:
g(0) = 54. S -;(29')

b) Relaxation time for finite g

Magnons having finite wave-vector g relax by the combined effect of dipolar and
electrostatic interactions. In order to find the relaxation time for magnons of very small
‘wave-vector g we have to add to 1/7,, calculated in the preceding subsection, the contribu-
tion from 3-magnon confluence processes discussed in [2]. As the wave-vector g increases,
all the dipolar processes: 3-magnon confluence and splitting, 4-magnon confluence and
splitting, 4-magnon scattering processes have to be taken into account, as well as the
4-magnon scattering processes due to electrostatic interaction. For large enough g, the
latter processes dominate. Here we shall calculate the inverse relaxation time determined
by the 4-magnon scattering processes.

We use the general formula (22) and in the coefﬁcient G2-* we neglect the dipolar
contribution leaving only the electrostatic part I'ir.", cf. Eq. (7). Moreover in the first
approximation we retaln only the leading term in the expansion of T'igF, i. e., we take
T4, = (4/5) n? IN-"* kp? k- k'. After standard calculations we get for the inverse relaxatlon
time of magnons ¢ (averaged over the directions of q) as determined by the two-two scat-
tering processes due to the electrostatic interaction: :

272

I N
(@D = (6r[125) — n*(Bakd) ™
hakg

0

[ dx J dyp(x, y)p(x, WG Ey—p). (30)
0

0

X

] -

The notation is as follows:

' 1 1 1
p(x, y) = ] (e”",—l +omg .+1> -



825

__L_._.l__, (1)

es+x_ 1 es+y__ 1

o(x, ) = e+ 0HCE+8) W1+ p—1—p—au/T+p+V1-p},  (322)

. [(2+/xy 2p ————)
_ 32b
p = min (x+y x+y«/ +y—p (32b)

and

‘ Bo, &= 2ugHP.

(For reasonably low temperatures the only singnificant contributions to the integral in
Eq. (30) come from small values of x, y, corresponding to the central region of the Brillouin
zone. Therefore as usually, we replace the upper limits by infinity instead of the values
defined by the Brillouin zone boundary. The same remark applied also to the integrals
in Eqs (52) and (27).) ‘ .

From Eq. (30) it is easy to calculate the relaxation time for long wavelengths magnons
and for not too low temperatures, within the condition ag? < kgT. In the absence of the
external magnetic field (¢ = 0) in lowest order with respect to (ag?/kgT) we have from
Egs (30)-(32):

1 64n n’I kg
— = k)¢ x
gL 25 hockF <ozkp) (alke)”x
A () Zeon (%) 1o +0(g%) , (33)
koT) " \kT) "2 - |

C, and C, are numerical coefficients; their approximate values are C; = 0.9, C, = 2.6.

In the limit of very low temperatures the magnon occupation numbers N are small
and we can neglect in Eq. (22) products of the N’s. Consequently, Eq. (22) simplifies to
the expression

132 = ka(lGn/h) [(4/5) *IN"*kz 2k - KPP x

X Nk+k"‘45(Eq+Ek+k"—q—Ek—Ek')‘ (34)

Elementary calculations give the simple result (¢f. [5] for a similar result derived for the
Heisenberg ferromagnet)
272
1/c2e = 36 Y N I
25 hak?

ksT\*/*
n*(qfke)® (i) Zs5(e) (35)
F

where ¢ = 2ugHJkgT. The auxiliary function standing in Eq. (35) is defined as Z,(e) =
0
> k™" exp (—ke). For ¢ = 0 it reduces to the Riemann {-function, Z,(0) = {(n).
k=1

In concluding the present Section it should be noted that the general pattern of magnon
relaxation phenomena is to a much extent model-independent. In particular, if in our
itinerant electron model we calculate the coefficients (5) and (6) of the effective magnon
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Hamiltonian in lowest order with respect to magnon wave vectors, we obtain exactly the
same results for the dipolar part of the magnon inverse relaxation time as those known
for the Heisenberg ferromagnet (compare Eqs (24) and (25) with results quoted in refer-
ence [5]). The lowest order electrostatic contribution to the inverse relaxation time is
the same in both models, allowing only for the obvious difference in the interaction
parameter. In particular, - Eq. (35) _corresponds to the low-temperature expression
for the magnon relaxation time in localized-spin ferromagnets quoted in [5]. The formula
(33) for low-energy magnons is similar to the result obtained for the Heisenberg model
in [12] by an approach different from the kinetic equation method used in the present
paper. The leading term of the right-hand side of Eq. (33) was calculated for the itinerant
electron ferromagnet in [11].

4. Correctionsto the spontaneous magnetization from magnon interaction

It was shown for the first time by Dyson [6] that for the Heisenberg ferromagnet the
interaction of magnons contributes a correction to the expansion of the magnetization in
powers of temperature which is proportional to the fourth power of temperature.
A similar result follows also for itinerant-electron ferromagnets [7]. Here we shall rederive
and slightly generalize this result starting from the effective Hamiltonian and adapting
the scheme of calculations developed for the Heisenberg ferromagnet.

For calculating corrections to the spontaneous magnetization from magnon inter-
action we shall neglect here the dipolar interaction. This simplification means that -the
results will be inaccurate in the region of extremely low temperatures, say below 1°K.
We start with the simplified effective Hamiltonian

‘%e = Z Eqﬁ;ﬂq'i' kkz sz'ﬁ;-i-qﬁl.:".-qﬁk’ﬂk' (36)
q ‘q .

For the Heisenberg ferromagnet, corrections to the spontaneous magnetization from
magnon interaction were calculated by many authors (see e. g. [5] for a review); most of
the calculations were ‘based on the fundamental paper by Dyson [6]. Here we shall use
quite formally the formulae quoted in [8]. They are based on a modification of the Dyson
theory due to Szaniecki [9] and take for granted the fact proved by Dyson [6] that the
kinematical interaction of spin waves has no influence on the low-temperature thermo-
dynamic functions of the Heisenberg ferromagnet. ,

For the itinerant-electron ferromagnets a similar problem of kinematical interaction
of magnons is much more difficult and in this respect the spin wave theories in the two
models have the deepest differences. At present there are no results available concerning
something like kinematical intéraction of magnons in the itinerant electron ferromagnets.
Any exact approach along a reasoning similar to that known for the Heisenberg model
will be hindered by the fact that the operators g, B, identified as magnon creation. and
annihilation operators have complicated commutation propertles which only in the
Random Phase Approximation reduce to the boson commutation rules. Further, the
expression (36) for the effective Hamiltonian (36)-is not exact, contrary to Dyson’s theory
in which the magnon Hamiltonian represents exactly the exchange energy, but is based on
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several approximations: it rests on the RPA, neglects terms of higher than the fourth
order with respect to'the magnon operators, to say nothing of the neglect of the magnon-
-electron interaction which underlies the method of the effective Hamiltonian. :
"However, there are good reasons to believe that in the region of low temperatures
in which the number of thermally excited magnons is low the effect of all the above-
-mentioned limitations, which can be considered as a substitute for kinematical interac-
tion of magnons in itinerant electron ferromagnetics, is negligible as far as thermodynamic
properties are concerned. Therefore, from now on we shall use the results described in [8]
starting from the effective Hamiltonian 5#,, (36) which has the same form as the Hamilto-
nian (6.6-8) of [8] (we shall quote the formula (6.6) of reference [8] as (SW-6.6), ezc.). In
order to use the formulae of [8] we have to put I'fy defined by Eq. (11) instead of the
expression (—% JN-! I'f,) which appear in the interaction Hamiltonian (SW-6.8) and the
following formulae of [8]. Let & = Tr exp (—p#,) denote the partition function of the
system of magnons and &, = Tr exp (— B Y, E,B; B,) the partition function for non-inter-
q

acting magnons. Calculation of & for any degree of accuracy is trivial.
Using the Matsubara [10] perturbation expansion the partition function can be
written in the form (¢f. SW-6.67; 6.70)

Z =Z%,exp ). D, 37
m=1
The leading terms in the perturbation series Y. D,, are proportional to the fourth power
m=1 .

of temperature. According to the formulae (SW-6.72; 6.74, 6.76, 6.77), in lowest order
with respect to temperature (i. e., neglecting terms of higher order than 7%) we have

D= - 23‘ ;, fl?kf—Nkafa_ (398)
D, =28 ka Tzk'fk——?q,k’ +q(Ex+qt Eg—g—E—Ep)” NN +0(8™), (39)
‘q
and, in general,
D, =(-2)"B ; T o T2y o T g0 X
q15q25.++5 dn -1

X (Ex-gy+Ep 4 g, — Ei—Ep) " (Bie gy + B 4 g, —
~E—E) " o (Byego -+ Eigy . — Ex—E) NN +0(877). (40)

Here, as in Section 3, ]_Vk’denot‘es the magnon occupation number at thermal equilibrium.
Calculation of D, is straightforward. For low temperatures only small values of
wave vectors contribute to the sum in Eq. (38). The result of standard calculations is

3n 54
Dy = — —5—(1+ gn) Nn?n3(IJakZ) x

x [Zs)2(21gH [kgTY] (ks T ak2)* +O(T?). (41)
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In order to calculate D,, D5 etc. we have to sum over all values of the wave-vector ¢
from the first Brillouin zone. Unfortunately, the magnon energy E, and the interaction
coefficient I'}y, are given only as expansions in powers of the wave-vectors components
which are valid only in the central region of the first Brillouin zone. For the Heisenberg
model the main contributions to the sums over ¢’s in the right-hand sides of Eqs (38),
(39), (40) come from the region near the centre of the first Brillouin zone. We expect the
same to be true for the itinerant-electron model and, in computing D,, for m > 2 we
adopt an approximation like Debye’s for phonons. We shall restrict sums over g to values
satisfying the condition 121' | < go, where the parameter g, is the maximal value of the
wave vector for which the simple quadratic dispersion relation for magnons, E, =
= 2ugH+aq?, holds with reasonable accuracy. This definition is a little vague but the
final result is not too much sensitive to the exact value of g,. In practice we can take for
go a value between %(w/a) (a is the lattice constant) and the Debye wave vector.

Adopting the above approximation we can calculate D,,m > 2, in the standard
way and the result is

n T
D, = K} [Z5/2QusH[ksT)]*Nn(kg|qo)° x

x {} nu(I/akg) (@o/kr)*}"(ks T [ak7)* + O(T*). (42)

In calculating D,, we imposed the condition n(go/kr)? < 1, in order to simplify calcula-

tions.
Finally, the correction to the free energy of the system of magnons due to the magnon

interaction is
AF = =7 'In(Z[%o) = —B~' Y. D, 43)
m=1

-]

As is evident from Eq. (42), Y. D,, is a series which can be easily summed up giving in the

m=1
lowest order with respect to temperature

e

3n
Z Dy = — 5 [Zs,.usH/ kBT)]zN n*n°(Ifokz) x

m=1
6 [2 n(I/ak%) (qo/kr)
8 {1‘ 51 [3 T IS g o) (qo/kF)s} g
x (kT |ak2)* +O(T?). 44

The result (44) was obtained under the restriction (4/5) n?(I/ak2) (go/kz)® < 1. This condi-
tion, together with the former one, %(go/kr)* € 1, limits the validity of the present ap-
proach.
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From Egs (43) and (44) it is easy to derive other thermodynamic quantities. For
instance, the correction to the spontaneous magnetization due to magnon interaction is

M) -Mo(T) = ~ ¢ @) ¢ (3) (1) x -

2
6 [2 n(I/akz)do/kr
* {1" 5" [5 T S 1k (qo/kpf]} *
x (kgT|ak2)* M(0) +O(T>). (45)

M(T) denotes the spontaneous magnetization at temperature T, its value at T = 0 is the
saturation magnetization 'M(0) = 2ugNn, and My(T) is the spontaneous magnetization
at temperature T as calculated from the linear spin wave theory. Mo(T) is given by the
usual expansion containing terms proportional to 732, 752 T2 etc. (cf. [6]).
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