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A method of an effective Hamiltonian for magnons in the itinerant-electron ferromagnet-
ics is formulated. The method reveals close analogies between the behaviour of magnons
in the itinerant and localized electron ferromagnetics, and is of particular use for a simplified
but systematic treatment of magnon interaction. The effective Hamiltonian is derived for
the case of strong itinerant ferromagnetism in a single narrow band, and simple applications
are described.

1. Introduction

In the itinerant electron model of ferromagnetism a magnon is defined as a bound state
of an electron and a hole of opposite spin [1]. The spin of the electron from the electron-
-hole pair is antiparallel to the total spin momentum of the system of itinerant electrons
and the electron-hole bound state corresponds to the propagation of a spin reversal, in
close analogy with magnon in localized electron ferromagnets.

. It is the purpose of the present paper to explore this analogy by introducing an effec-
tive Hamiltonian expressed in terms of boson operators for the creation and annihilation
of magnons, similar to the well-known boson representation of the Heisenberg exchange
Hamiltonian (see, e. g., [2]). The idea of the effective Hamiltonian is based on intuitive
arguments; it is simple, but it seems reasonably accurate; it is particularly useful for treat-
ing various aspects of magnon interaction.

The theory of the effective Hamiltonian was formulated in [3] and applied to the
relaxation by 3-magnon processes of dipolar origin in [4]. A hint to the method can be
inferred from an early treatment by Izuyama of corrections to the spontaneous magnetiza-
tion due to the interaction of magnons [5].
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2. Outline of the method

Because of the limited availability of the lecture notes [3] it is useful to recall here
some of the arguments and to describe briefly the method of the effective Hamiltonian.

For simplicity, we consider the case of strong ferromagnetism in a single narrow band
described by the Hubbard Hamiltonian

H = kz skaal:;‘akc'ih(I/N) kkz al:-+q,+ak,+alj:—q,—-ak,~ (1)
4 ‘q

where ajl,(a;,) are the creation (annlhllatlon) operators for electrons of spin ¢ in the Bloch
states specified by the momentum k. Let H denotes the magnetic field applied along the
z-axis of the coordinate system; then, &: = &+ ugH, where ¢, is the Bloch energy, Ug
the Bohr magneton, I the intra-atomic Coulomb integral, and N denotes the number of
atoms in the crystal.

We assume the ground state of #, Eq. (1) to be one with the spin-down band occupied
up to the Fermi energy & and the spin-up band completely empty. Such a “strongly
ferromagnetic™ state can be the ground state of the Hubbard Hamiltonian, at least for
certain values of the ratio of the Coulomb integral 7 to the band width, and for certain
concentrations of itinerant electrons (cf,, e. g., [6]).

Let |, ) denote the ground state. We define an operator B of the form

ﬁ; = Z bk+q,kalj-+q,+ak,—' 2

Within the Random Phase Approximation (RPA) the state Bl 1@y > is an elgenstate of
the Hamiltonian (1) [1, 7]. Such a state represents a magnon of wave vector g, and the
operator f;” can be interpreted as the creation operator of a magnon q The energy E,
of the state /3,1 |®o >, or the magnon energy (the ground state energy is taken as zero)
is found by solving the equation [1, 7]

(I/N) ;' (r+q—&+4—E)~' = 1. 3
(ex<zF)

Here, 4 denotes the splitting energy of the spin-up and spin-down electrons, i. e.,
= nl+2ugH )

where n is the number of itinerant electrons per atom.
The coefficients by, , 1, as calculated in RPA from the eigenvalue equation #B] |0, ) =

= qﬁq I¢O> are [1 7]
d‘l
8k+q—8k+A,__Eq.

®

bk+q,k =

It is convenient to determine the normalization constant d, from the condition

;’ |Bragul® =1, (6)

(ek<eF)



811

whereupon
ldg) = { ; (esq— 8t A—E) 2} 712, (6)
(ex<eF)

with an arbitrary phase factor.
The magnon creation operators ff; and their Hermitian-adjoint magnon annihilation
operators f, satisfy the commutation rules

(87,821 =0 (7a)
and, in the Random Phase Approximation,
[ﬁq? ﬁ;]m’A = 5qq'- (7b)

Condition (6) is imposed in order to have [f,, B;] = 1 within RPA.

The operators f; and f, can be used to develop a formulation of the theory of magnons
in itinerant-electron ferromagnetics which is completely analogous to the spin-wave
theory of the Heisenberg localized-spin ferromagnetics. Such a formulation is useful
since, first of all, it points up some properties of ferromagnets which appear to be model-
-independent and, second, it enables one to apply some results derived for Heisenberg.
ferromagnetics to the itinerant-electron model. Some examples of applications of the
method will be described in a subsequent paper [8].

3. Effective Hamiltonian

Unfortunately, the theory of the effective Hamiltonian cannot be formulated rigorously.
It is necessary to use intuitive arguments which, however, have fairly sound physical
grounds.

Let us recall what we know about the low-lying excited states of the Hamiltonian (1).
The simplest single excitation from the ground state |®,) are the Stoner electron-hole
pair described ‘by the wave function |1pk+q,,,,,> = Gjfy 4.0 - |Po). Here K is restricted by

the condition & < & and, for ¢ = —, g should satisfy the condition &, > & In the
Hartree-Fock approximation |y, .,» are the eigenstates of the Hamiltonian (1) with
excitation energies equal to &, = = &..,— & O EF " =A+g ,—gforo=—or +, ie,

for Stoner pairs with and without spin reversal, respectively. The energy needed to reverse
the spin of the spin-down electron without changing its Bloch energy is relatively high
(typically it is of the order of magnitude of a few tenths of one electronvolt). For excited
states with sufficiently small momentum ¢ the interactions between electrons which are
neglected in the Hartree-Fock approximation favour the electron-hole bound state energeti-
cally.

For small enough momentum ¢ of the excited state, the free Stoner pair with spin
reversal, |9 41 >, has a much higher energy than the corresponding bound state or magnon.
Thus the low-lying energy levels of an itinerant electron ferromagnet are determined by
small-g, free Stoner pairs without spin reversal, and by magnons of small g. On the other
hand, the population of small-g Stoner pairs with spin reversal can be assumed to be
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negligible because of their relatively high energy. Stoner pairs without spin reversal are
of little relevance to magnetic properties as such. They influence the temperature dependence
of thermodynamic quantities and they can be taken into account separately. Here we
will be interested in magnons and we shall extract from the full Hamiltonian, (1), those
parts which approximately correspond to the energy of the system of magnons in the
itinerant-electron system. This will be what we shall call the effective magnon Hamiltonian.
The remainder will correspond to the total energy of Stoner pairs without spin reversal
and, with our system having |®,) as its ground state, we will be able to approximate this
term by an expression like Hgioner pair = Z &—ai_a- (no electron-hole pairs of spin + are
possible for our ground state [®y)). *

The effective Hamiltonian will be formally constructed as an expansion in products
of the magnon creation and annihilation operators f;, B,. The obvious requirements
of hermiticity and of conservation of the crystal momentum can be used to restrict possible
choices of products of the operators ﬁq , By entering into the effective Hamiltonian. Further
simplifications follow if, for instance, we can presume, as is indeed the case for the system
described by the Hamiltonian (1), that the effective Hamiltonian should conserve the total
number of magnons. It should be pointed out that actually there is no ambiguity in the
final effective Hamiltonian: had we not made explicit use of the above general properties,
the spurious terms in the effective Hamiltonian would have ultimately vanished. '

The Hubbard Hamiltonian (1) commutes with the total magnetic moment of the
system of itinerant electrons, —pupZy,0a;;a;,. Therefore we expect that the corresponding
effective Hamiltonian will conserve the total number of magnons (which is proportional
to the total magnetic moment). The most general form of the effective Hamiltonian, up to
terms of fourth order, and apart from a trivial constant, will be

He=T K+ 3 T8eBit B — BB )
q ‘q

Higher order terms can be included, if necessary, for particular cases. The coefficients
K,, T'}y etc. can be formally written as follows:

K = [ﬁqa [f%e’ ﬁ;]] (93)
Fkk = Z[ﬁkhp [ﬁk' —q° [[”e’ Bk’] ﬁ ]]] (9b)

We use the relations (9) to define the coefficients of the effective magnon Hamiltonian 5,
which is equivalent to the Hamiltonian of a system of itinerant electrons, J:

K, = {D| [ﬁq’ [9? /3+]] (Do), ‘(103)
T = KBl [Bisg [Bir—g [, BEL, BENT 00D, (10b)

The averages are taken with respect to the ground state |®,).

We express the magnon operators ﬂ;‘ , B, in terms of the electron operators ag, ay,
through Eq. (2) together with Eqs (3)-(6). The coefficients (10) of the effective Hamiltonian
can then be determined by simple, if rather tedious, calculations. For K, we obtain

K, z(ek+q—sk+A) |bet gl 1y — (N/Dd2, (11)
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where n, = (d’olak.,ak..@o) is the ground state occupation number for electrons of spin—;
n, equals 1 for & < & and is zero otherwise. Using Eqgs (5) and (6) we obtain the simple
result K, = E,, E, being the magnon energy determined by Eq. (3), as it should be for

consistency.
The second term in the effective Hamiltonian (8) describes two-body interaction

between magnons I'}y is given by

% = ¥ +Tof + Th T 4+ Tl 749, (12a)
Fkk = "(I/N) Z bp+k,pbp ' +k+q,p’ +qb;+k -4, pbp +k+g,p Ty +
rr’
+(I/N) Z bp;k’;p‘bp+k+q,p+qb;'+k —a.p bp+k+q P ps (12b)
pp’

(see [8])
~ An expression of the form (10b) was used by Izuyama [5] to study the effect of magnen
interaction on thermodynamic propertles of itinerant ferromagnetics.

4. Generalizations

No essentially new results have been reported so far, except for a formulation of
a systematic approach to magnons and their interaction in itinerant ferromagnetlcs
which is easy to generalize for more complicated cases as, for instance, for several bands
or Hamiltonians with relativistic effects included.

As an example of such a generalization we shall consider the system of itinerant elec-
trons in a single narrow band, taking into account the magnetic dipolar interactions between
electrons. The total Hamiltonian of the system will consist of the Hubbard Hamiltonian
(Eq. (1)), plus the energy of the dipolar interactions. The dipolar part of the Hamiltonian
for the multi-band case was given in [9]. We can use this result, suppressing band indices
in Eq. (12) of [9]: The total Hamiltonian will now be given by

= kz EkoTigllko+(I/N) ka O qu+ O, O g, O~ —
o = 'q .

_N—l k; {Dq(alj-+q,+ak,+alj'.—q,—ak’,—— +
'q

+ + o+ +
+ g1 O~ g — g, ~ O+ — 3t g, + Oty Ok — g, + Ok + =
+ +
— 30k 4 g, O, ~ Ao — g, g, =)+

+
+[A Arc+q, +ak,—(alj;—q +0r,+ —a;—q,—ak',—)'l'

+B ak+q I S S +h.c.]}. (13)
The coefficients are deﬁned as follows
— (UENV) [F@I | dir[1=3(z]r)*]e 7, (142)
= GUNIV) IF@P [ dir™S(x—ip)ze™ T, (14b)
B, = G i3NIV) [F@P | dir~S(x—iy)%e @7 (140)
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Integration in Eqs (14) extends over the volume V of the crystal. F(q) is the magnetic
form-factor, defined in terms of the Wannier function ¢(r) of itinerant electrons as follows:

F@) = | drip()e . - (149)
In practical calculations we shall be interested in the coefficients 4,, B,, D, for small ¢
(that is, g small as compared with the inverse lattice constant but larger than the inverse

of the linear dimension of the ferromagnetic sample). For this long-wavelengths limit
we have

Aq . qu‘l+/¢12, (15a)

B, = —1D(q-[9)*. (15b)

D, = 2D[(4./9)*—3], (150)
where

D = 4muzN|V, (15d)

and g, = ¢,+iq,. In the long-wavelengths limit the magnetic form-factor has been
replaced by unity (cf. [4], there are two misprints in formula (2) of [4]: B, should be
replaced by —B, and the right-hand side of the expression for D, should be multiplied

by the factor 2).
For g = 0 the arguments leading to Eqs (15) cannot be used. Instead, for a sample

in the form of an ellipsoid of revolution we have
Dy = D(N,— %), (15€)

where N, is the demagnetizing factor for the symmetry axis (taken parallel to the applied
magnetic field). 4, and B, vanish in this case.

The Hamiltonian (13) does not conserve the total magnetic moment; therefore, in
constructing the effective Hamiltonian equivalent to (13) it is not admissible to restrict
oneself solely to terms conserving the number of magnons. The general form of the effective
Hamiltonian up to terms of fourth order in the magnon operators is

He=Y (KB}, +(LBB_,+hc)}+
+ Y, (CogBi+aBiby +hc)+
+ k; ng'ﬁ;ﬂﬁ;—qﬁkﬁk"l'

+ Z (F qq’q”ﬂ;+q’+q”ﬁqﬁq'ﬁq"+h'°')' (16)

9'q’
K, and Gf are given by the right-hand sides of Eqs (10a) and (10b), respectively, for
the Hamiltonian (13), and
Lq = ‘%(qsol [['}f’ ﬁ;l ﬂiq] [¢0>’ (173)
Cor = 3ol Bysas [T, 571, BET1 126, (170)

qu’q" = 715' <¢o| [ﬁq+q'+q”9 [[['”9 ﬂ;']’ ﬁ;']’ ﬂ:]] @o)- (170)
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Strictly speaking, terms proportional to Bf,B—,-, and similar higher-order terms
could also appear in the effective Hamiltonian (16). We shall neglect such terms since,
in the first approximation at least, they do not contribute either to magnon energies or
to the magnon relaxation rates.

4. Applications

The simplest example of application of the effective Hamiltonian is the calculation
of corrections to the magnon energy coming from dipolar interactions of the itinerant
electrons. In the first approximation the effective Hamiltonian is restricted to the second
order terms of the right-hand side of Eq. (16). From (10a), (17a) and (13) we obtain

K, = E,—N|d,/I\*D,—2Dy+

-1 %
+N Z Dy{bys gDkt qra ot gMilicrg T
P

2 1
+ by 4 gl nknk+q+q'+%|bk+q,k12"knk+q'}’ (13)

and
L, = Nld,/I*B,+

+N7! kz Byby— g kgt —aDi—ap{ Mt iem g m g = 2Mic— g - g} 19
~

The second-order part of the effective Hamiltonian can be diagonalized by the well-
-known Holstein-Primakoff transformation [10]. The magnon energy corrected by dipolar
contribution is now given by

B, = {KZ—2L*}">. (20)

The uncorrected magnon energy E, is determined by condition (3), which is valid
within RPA. For long-wavelength magnons the solution of Eq. (3) is of the following
general form:

E, = 2uzH+aq’. 1)

The magnon energy coefficient « depends on details of the band structure and the Fermi
surface. The Random Phase Approximation is actually too crude to be used for calculating
@ quantitatively, even for known band structures. Considerable efforts have been made
to calculate the coefficient o accurately, taking into account many-body effects beyond
RPA, (see, for instance, [11]), and for the real band structure [12].

Dipolar corrections are significant only in the limit of long magnon wavelength.
In this limit it is justifiable to neglect those parts of the dipolar corrections which are
proportional to g (and, obviously, all higher powers of g) since they are by a few orders
of magnitude smaller than the corresponding exchange term ag®. Then we obtain

K, = E,—2Dy+D,+0(Dg?), (22a)
L, = B,+0(Dg>. (22b)
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From Egs (20)-(22) it follows that
E, = {[2up(H —47MN,)+aq”] [2u(H —4nMN,) +
+aq®+8nMug sin® @,]}'/2, _ (23)

with M standing for saturation magnetization, = nNupp/V and @, being the angle be-
tween the magnon wave vector q and the magnetic field direction Wthh 1s parallel to the
z-axis. A more accurate calculation, taking into account terms proportional to Dg?,
(Whlch are neglected in Eqgs (22)) leads to the same expression as in Eq. (23) but Wlth the
coefficient « slightly modified by the magnetic field H and the dipolar terms, o [9]
E of Bq, (23) is. equlva]ent to the standard expression for the long-wavelength magnon
energy with dipolar corrections for localized spin ferromagnetics, derived by Holstein
and Primakoff [10]. Thus the form of the dispersion relation for long-wavelength magnons
appears to be the same for the two extreme cases of localized or itinerant magnetic
electrons. This observation encourages one to seek other properties which are essentially
model-independent. It appears that the effective magnon Hamiltonian itself may be consid-
ered as in a sense model-mdependent For instance, magnon relaxation rates in the
first approximation are the same for both models, allowing for the obvious difference in
the exchange parameters. An example of the app]ication of the effective Hamiltonian to
the calculation of magnon relaxation rates had been ‘described earller [4], another case
is belng considered in the next paper.
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