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Collision equations for the Bryan-Pidduck model of molecules & with rotatlonal degrees
of freedom are modified by replacement of molecular radii by the effective radii ¥y and applied
to the Sather-Dahler relaxation theory. In collision and relaxation equations the quantity
j¥ = I(r¥2 (where I,is the moment of inertia) plays a similar role in the description of
rotation as the molecular mass my in the description of translation. The rotational relaxatlon
collision number for molecules. @ in a mixture with structureless atoms y for which r,, =0,
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the reducéd mass Myy. Values calculated from this formula — which is also valid for the pure

gas @ — are in the experimental range.

where the reduced quantity ji, is defined similarly to

/

1. Introduction

The Bryan-Pidduck model of a perfectly rough and elastic sphere [1, 2] is the simplest
model permitting the discussion of collisions of spherical molecules which can exchange
their rotational energies. In spite of the defects [3, 4] connected with such a simplified
description of collision, the advantage of its simplicity accounts for the fact that this model
is still very widely used [5, 6, 7, 8].

- The introduction of the roughness factor [9, 10] into the rotational relaxation equa-
tions in which this model is applied is inconvenient because it enlarges the discrepancies
between theoretical and experimental results [11, 12, 13]. Since the roughness factor is
a property of both colliding molecules, it is not appropriate for a discussion of collisions
of rotating molecules with structureless atoms which cannot rotate.

Modification of the Bryan-Pidduck model by the introduction of effective radii ry
smaller than the molecular radii r, [14] allows one to overcome the last two difficulties.
On applying this to the Sather-Dahler theory of rotational relaxation [9] we were able

. ¥ Address: Instytut Podstawowych Probleméw Techniki, Swu;tokrzyska 21, 00-049 Warszawa,
Poland.
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to obtain equations giving the values for rotational relaxation collision numbers within
the experimental range. In this paper the 4dea of such a modification will be discussed
more extensively.

2. Simplified collision equations for spherical top molecules

We consider the collisions of spherical top molecules AB, which consist of a central
atom A4 and 7 non-central atoms B. Such molecules will be denoted by «. We modify the
Bryan-Pidduck model of rough spheres by introducing an effective radius 7> instead of
he molecular radius r,.

We write the equations of impact in the following form

my(ci—e) = —J my(ey—c¢;) = J 5}
L(0)—0) = ~11kAT  Lo)—0,) = —rkAJ )

where my, m, are the masses of colliding molecules and 7, I, their moments of inertia.
€1, €5, O, 03, €1, €3, 0, and o} denote their linear and angular velocities before and
after collision, respectively, J is the impulse exerted on the second molecule by the first,
and k is the unit vector along the line from the centre of the first molecule to the second
molecule at the moment of their contact.

In Eq. (2) we replace r, by r; because we assume that the roughness is mainly con-
nected with the existence of non-central atoms. These can be treated as elastic teeth [1]
or knobs [9] which are necessary for the exchange of rotational energy. In particular
collisions this exchange does not depend on the molecular radius but on some acting
radius connected with the mutual positions of the colliding atoms B. These acting radii
are no larger than r,. Thus rr being some average acting radius cannot exceed r,

rr<r, 3)

As it can be seen from a comparison of the theory presented in this paper with experi-
mental results, the effective radius 7} is in general no smaller than r,, the distance between
the nuclei 4 and B in the molecule «.

r, <1, )

We attempt to describe complicated collisions by a simple model. That is why, fol-
lowing Sather and Dahler [9] who did not intend to calculate the values of the roughness
factor, we have discussed here only the possible ranges of ry.

From Eqgs (1) and (2), in a similar manner as in reference [3] we get collisional equa-
tions in the following form:
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where
V = kk-(c;—c;) ©®
V, =U~kk)- (cx—c)+rkno,+rikrno, 10)
where {J is the unit tensor, m,, denotes the reduced mass
| mid = m;t4+my! (11)
and likewise
(127" = ()7 0™ 12
where ,
A=LOD? =Ly B CE)

The introduction of the quantities ji, j5, and ji, instead of the usually defined quantities
K, K,, and K;,, which in this treatment can bz defined as
K=" k=2 g2 (14)
my my mys
makes Egs (5)-(8) more readable. In these equations, as well as in relaxation equations
presented in this paper, j; and j; play a similar role with respect to rotation as m, and m,
do for translation.

From Eqs (1) and (2) it can be seen that in Eq. (2) only a part of the collisional im-
pulse J usually discussed in the Bryan-Pidduck model effects the change of angular velocity,
because r, is smaller than r, and thus r*k A J is smaller than r,k A J.This idea has been
clearly introduced in the previous paper [14]. However, according to Eq. (2), in Eq. (5)
of Reference [14] S; and S, should be replaced by the square roots of these quantities.
The previous form of these equations followed from the idea of some effective moments
of inertia which need not be introduced in this treatment because the introduction of
ry is sufficient to overcome all the difficulties discussed. In the above, we have not discussed
the possibility of the influence of quantum effects on the possible values of ji or K be-
cause we do not anticipate that these effects could change the ranges of r; presented in
Eqgs (3) and (4).

3. Collisions of spherical top molecules with structureless atoms

The collision between the sperical top molecules « and structureless atom y could
not be described by the Bryan-Pidduck model even after the introduction of the roughness
factor, because this quantity, connected with both colliding molecules, could not be ap-
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plied to the encounter of a partially rough sphere with a smooth sphere. That is why Sather
and Dabhler [9] first tried to introduce K, = 0, basing their arguments on a discussion of
collision equations for rough spheres [3, 4], according to which in the collisions of two
rough spheres characterized by K; = K, = 0 their linear and angular velocities become
uncoupled. In the next paper [10] they applied the idea introduced by Widom [15], accord-
ing to which the collision of the molecule o and atom y is treated by replacing the radius r,
for the molecule « by the sum of the radii r,+r,, and by considering the atom y to be
a point.

Because of the quantum restrictions [16] we assume that in this case the atoms y
cannot rotate. From Eq. (2) it can be seen that it is equivalent to either

K =0 (15)
or
I, =00 (16)

because then the angular velocity of the atom y cannot change. The results (15) and (16)
are trivial because the atom y cannot change its angular velocity either if the acting force
in a collision between the atom y and the atom B of the molecule 4B, is central, or if the
rotational inertia of the atom y is infinitely large. Condition (16), which could be con-
nected with an introduction of an effective moment of inertia, looks very cumbersome
and we think that the introduction of an average effective radius r;f .= 0 is reasonable.
The inequality (4) is still satisfied because for the atoms y the distance between nuclei
does not exist and r; = 0.
From Eqgs (15), (7), (13), and (10) we see that

0, = o, a7
and
V, =U-kk)-(c,—c)+7kro, (18)

As éi: consequence, the angular velocity e, for the a-y collisions does not appear in the
collision’ equations (5)—(8).

From Eqs (13) and (14) it can be readily seen that conditions (15) or (16) are equiv-
alent to

gy t=0 (19)
and ‘
Kyt =0. (20)

The introduction of the last condition enabled us to obtain the relaxation equations in
a form which gave the calculated results in the experimental range [14]. These equations
will be analyzed more extensively in the next section.

To complete the discussion of collision equations we should explain that according to
this treatment two- colliding atoms y cannot be discussed as rough spheres but as smooth
spheres because they cannot contain non-central atoms which are the source of roughness.
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4. Relaxation equations

As we showed previously our modified model can be used in a simple way in the
Sather-Dahler theory of rotational relaxation in dilute gases if the functions 4 and B
introduced on page 2032 of reference [9] are applied to our modified model. These
functions were introduced for the o-o collisions through the formula

From the collision equations (1), (5), (9), (10), (13) and (14) it can be seen that
-1 K
1+K; 1+K; 22)

From Eq. (22) it follows that the condition discussed by Sather and Dahler
A =B-1 - (23)

is satisfied for our modified model and that the function B from Eq. (22) can be introduced
to Eq. (24) from reference [9]. For self-relaxation we then get

AT,y 1 ‘ .
d M= - — (T;'ot,a_ T;r,a) (24)
t T,

where ¢ is time, 7, — the relaxation time for equilibration of rotational temperature Tm, .
and translational temperature 7T, , of the molecules «, and

3 (me+j)? 1

Ta = e . 25
4 mgj, N 9
Here the collision frequency N,, is given by
kT, o\
N, = 162n, (”__) 26)
‘ m,

where , is the number density of the molecules o.. From Eqs (26) and (14) it can be easily
seen that for ry = r,, Eq. (25) simplifies to the Wang Chang-Uhlenbeck formula [17].
The formula for the rotational relaxation collision number Z,, ,, which describes the
number of collisions during one relaxation time is

_ 3 (my+jd)’

rot,ax & 27
=gt @)

In the case of a mixture of gases of spherical top molecules « and f§ the Sather-Dahler
relaxation equations for the rate of change of the translational temperature can be modified
as follows, after an introduction of the effective radii r; and 7 :

dT;r,a e Ttr,a - Ttr,ﬁ _ T;r,a_ ’I;-ot,az _ T;r,a'— ’I;'ot,ﬂ (28)
dt Z Tap1 Z Tap2 Z Tap3
B B B
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where the relaxation coefficients 7,5(i = 1,2, 3) are

3 X - s\ 7!
Topr = 3 m.,,m,,(mm,1 +myg 12 (1 + - Zij'p) N;,l (29).
Tapz = 5 MadalMag' +(op) ™' 1* N (30)
Taps = 3 maj;[ma—ﬁl +(j:tﬁ)_1]2 ;ﬁl (31

and the a—f collision frequency N,z is

27k T, .5 \*
Ny = 2r,+715)°n, (—-—‘f) (32)
i ma 8
where
ma_ﬂl T;r,aﬁ . ma_l’I;r,cz-l'm;lT;t,ﬂ' (33)

The rate of change of the rotational temperature is

dTrot,a o T;ot,:z - T;-ot,ﬁ _ Trot,a - ’Rr,a _ T;'ot,a - T;r,ﬂ (3 4)
dt Z Tap1’ Z Tap2r Z Top3’
B B B

where
3 rr =1, o N—172p—1
Taptr = s JadplMag +Uap)” 1" Nag (35)
Tap2 = %j;ma[ma_pl'*‘(j:ﬁ)—l]zNa—ﬁl ' (36)
Tapsr = %j:m,,[ma;,1+(j;p)_1]2N;ﬁl. €

For a mixture, in which the concentration of molecules « is very small in comparison
to that of atoms 7, the rotational relaxation collision number Z,, ,, denotes the number
of collisions suffered by each rotating molecule during one relaxation time in the process
of equilibration of rotational temperature of molecules o and translational temperature
of atoms y. This number can be obtained as a product of 7,,3. N,, in the following form:

_ 3 my+m, (My+iny)’
rot,ay g

z

(38)

o
m, mzy.’ ay

where because of Eqs (12) and (19)

Joy = Ja- (39)

If we take into consideration that 2m,, = m, and 2j5 = j>(cf. Eqs (11) and (12)) we see
that Eqs (38) and (27) have the same form.
From Egs (39), (13) and (14) we have

" 1
K. =

a
T my ()t

(40
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In accordance with the suggestion of Widom [15] mentioned above, the sum r,+r, ap-
peared (in place of ry) in the Sather-Dahler formula for Zrot, ay making the values of K,,
much smaller, and the values of Z,, ,, much larger.

We should also take into account that

0\ 2 2
-4 md

N (1+ ] > (1+ .t)
(my+ja)” My) _\ Ja

K3 - &
Myja Ja m,

k3

m, Ja

@én

L . . 1
From these trivial identities we see that after taking into consideration Eq. (14), K or.k—*

a
can be introduced into Eq. (27), because in these equations the only measure of the rate

of equilibration is the mutual ratio of the quantities m, and j; . The same role can be
1
played byK or —¢ K* in Eq. (38). We can write Eqs (27) and (38) in the same form as Egs

(11) and (12) from reference [14].

If we consider that in the equations describing equilibration of translational temper-
atures of molecules « and S there appear express1ons in the form (m,+mg)*/mmy, [9,
18, 19], we see that the introduction of the quantity j, into rotational relaxation equa-
tions is very convenient because its role is similar to that of m, (cf. Eqs (25), (27), (29)-(31),
(35-37)).

From Eq. (27) we see that Z,, ,, has a minimum value which equals 3 if m, = j..
According to Eq. (38) the minimum value of Z ,, is (3/2) (m,+m,)/m, for m,, = j:;.
After taking into account the fact that the sizes of nuclei are much smaller than the dis-
tances between them we see from

I, = 3 mp (r)’ (42)
that for r; = r, the quantities j. and K. can be simply expressed as
Jo=%mpg, (43)
, 2 mpg,
K, == 44
3 myp,

In this case the value of j, is still smaller than that of m,. That is why Z, ,, is still larger
than 3. The values of Z,, ,, can be smaller than 3 because (1/2) (m,+m;)/m, can be
smaller than unity.

"~ A comparison with some experimental results is presented in the next section.

5. Comparison of the theory with some experimental results

The values of the collision number Zm.” « fOr Totational self-relaxation of spherical
top molecules can be calculated in a simple way from Eq. (27), because j¥ can be found
from Eq. (13). Such values of the collision number Z,, ,, for rotational relaxation of
spherical top molecules « in an inert gas y can be calculated from Eqs (38) and (39).
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We present the values of Z,y; ,, for CH,, CD,, CF,, and SF¢ and the values of Z,, ,,
for these molecules in the noble gases because some experimental data are available for
these systems [12, 13, 20, 217.In Tables I and 1I we present the results for Z,, ,, and Zeot, ay>
calculated for the two values of 7, related to inequalities (3) and (4), i. e. for ri = r, and
ri = r., respectively. The experimental values printed in parantheses are labelled with
single and double asterisks for Refs [20] and [21], respectively, and the results taken

from the last two references, [12] and [13], are given in parentheses without asterisks.

TABLE I
Zrot,a0 for rotational self-relaxation of spherical top molecules
. CHa 173 —6.1 (12%, 9.4%**, 12.3)
CD, 114—4.5 (7% 9.9)
CF, 6.3 —32 (3.0%%)
SFs 71—33 (2.8%%)
TABLE IL
Zyot, ay for rotational relaxation of spherical top molecules in inert gases
He Ne A Kr Xe
CH, 3.0—1.9 11.7—4.8 22.3-8.5 46.0—16.8 71.6—25.9
(3.0) (12.0) - (27.0)
CD, 2.1—19 6.6—3.3 12.2—5.5 24.7—10.4 38.2—15.7
(3.3) (7.4) (13.5)
CF, 2.3—-3.1 1.9—-2.5 24—2.4 3.9—-3.0 56—3.7
SFe 2.8—8.3 1.7—2.8 2.0—2.3 2.4—3.0 4,1—29

From the comparison given in Table I it can be seen that for rotational self-relaxation
the experimental values of Z, ., are in agreement with conditions set out in the introduc-
tion to Eq. (27), the effective radius r; ranging from r, to r,, (i. e. in the range of Egs (3)
and (4)). From Table II we see that the experimental values of Z,,, ., for CH, and CD4
mixed with noble gases are also in agreement with those calculated from Eq. (38) for rr
ranging from r, to r,.

6. Discussion

The main thesis of this paper is the assumption that in collision equations for spherlcal
top molecules « the molecular radius r, should bz replaced by the effective radius 7
which is smaller than r, (¢f. Eqs (2) and (3)), and that for structureless atoms y which
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cannot rotate, the effective radius rf equals 0. The introduction: of these assumptions into
the Sather-Dahler theory made it possible to obtain formulae for the rotational relaxation
collision numbers Z,, 4, (Eq. (27)) and Z ., (Eq. (38)), which gave the calculated values
of these numbers within the experimental range. Before this, the collisions of the struc-
tureless atoms y with the rough spheres « could not be discussed in a consistent way. That
is why Sather and Dahler, basing their arguments of the fact that the change of transla-
tional velocities for two rough spheres y is the same as for smooth spheres if K, = 03],
first tried to introduce that condition [9]. In the next paper [10] they further introduced
Widom'’s assumption [15] that in this case the mass and radius of molecule o should be
replaced by the reduced mass and sum of the radii r,+r,, respectively, whereas the atom
7 should be treated as a point. This led to their formula for Z,, ,, which gave much higher
values than the experimental ones. These results were worse than those obtained from
Widom’s relaxation.theory [15], in which rough spheres in such collisions were assumed
to be translationally at rest. Our idea that ( j;," )* =0 and (K;‘ )~! = 0 makes il possible
to overcome these difficulties. These assumptions enabled us not only to derive the equa-
tions for collision numbers mentioned but also to get collisions equations (c¢f. Eqs (5)-(8))
and rotation relaxation equations (cf. Eqs (24), (25), (28)-(31), and (34)~(37)) in a simple form.

In these equations the quantities j; and jf,,, defined in Egs (12) and (13), play a similar
role as the masses m, and m,;. As we see from Eq. (41), K describes the mutual ratio
between j» and m, only. A similarity can be seen between equations for relaxation of trans-
lational temperatures for the molecules characterized by m, and m,, and such equations
for rotational relaxation for molecules characterized by m, and j* (¢f. discussion under
Eq. (41)). The reasons for the advantage of introducing the quantity j; become obvious
if we take into account the fact that jj is a very good measure of rotational inertia because
it is composed of two quantities: the moment of inertia, which describes the tendency of
counteracting the change of angular momentum and the effective radius, which describes.
the tendency of effecting such a change through the capture of one molecule by another in
a collision. We think- that the idea of introducing r:‘ = 0 for structureless atoms can be
extended to the treatment of rotational relaxation of mixtures composed of structureless.
atoms and any kind of molecules which can rotate. This idea can also be introduced into
the description of diffusion in systems composed of spherical top molecules and structure-
less atoms. The correction factor introduced for comparison of the diffusion coefficient
of such systems with the diffusion coefficients for smooth spheres [22] would then be
equal to [m,+(m,+m.,) K} 1[m,+2(m,+m,)K,;]. Forlight atoms such as He in mixtures
with heavy molecules such as CCl,, CF,, SFs or SiBr, characterized by large K., this
factor can have values as low as 0.6 whereas for heavy atoms such as A, Kr, and Xe in
mixtures with CH, or CD, the values of this factor can be near unity.
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