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By employing the method of approximate second quantization a general formula is
derived for the excitation energy spectrum of a uniaxial ferromagnet with simple plate-like
domain structure in the presence of a homogeneous external magnetic field. The conditions
are examined under which the phenomenological Hamiltonian of the system can be diagonal-
ized in the non-interacting-magnons approximation. It is shown that the bounding condi-
tion for the solutions of the Hill equation restricts the dependence of the system’s excitation
energy on the wave vector to only three types.

1. Introduction

- The purpose of this paper is to give a general procedure for applying the phenomeno-
logical spin wave theory [1, 2] in determining the approximate energies of the elementary
excitations of a uniaxial ferromagnet with a simple plate-like Shirobokov-type [4] domain
structure in the presence of a homogeneous external magnetic field. This problem has
recently been the subject of extensive theoretical investigations (e.g., see [7, 12-15]),
partly because of the specific thermodynamic properties and resonance characteristics
of magnetic materials with domain structure. Also, knowledge of the spin wave energy
spectrum is relevant to NMR studies of ferromagnetic materials [16-18].

The starting point for our considerations is a phenomenological [1] Hamiltonian
constructed of the magnetization vector operator and including the exchange, anisotropy
and Zeeman terms. The magnetostatic self-energy (demagnetization) is not taken into
account. The zero-temperature spatial distribution of the direction of the magnetization
vector — which is subsequently chosen as the (local) direction of quantization — is deter-
mined by minimizing the Hamiltonian in the quasi-classical approach (approximate ground
state). Upon performing the Holstein-Primakoff mapping [3] in its lowest approximation
we obtain a Hamiltonian which is bilinear in Bose operators. In diagonalizing it, we show
that for a one-dimensional domain structure model the problem leads to a system of
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Hill-type differential equations, which is a consequence of the periodicity of the domain
structure. This, in turn, leads to the conclusion that regardless of the direction of the
external magnetic field the there exist only three types of dispersion laws for the spin wave
energy. This explains the results obtained in Refs [7, 12] in the field-free limit.

2. Approximate ground state

We assume that the magnetic energy of a unial ferromagnet is described by the
Hamiltonian of the form (e.g., see [1, 2])

H = | {A*M()My(x)+ BEM, ()M (x) ~ "M ()}, 1)

where the components M,(x) of the magnetization operator fulfill the commutation
relations

[M a(x)s M p(xl)] = 2il‘05(x - x,)saﬂyM J(x)' (2)

The notation used here is: i = \/ —1,2uy = gug, up— Bohr magneton, g — spectro-
scopic splitting factor, &, — Levi-Civita tensor, M, ,(x) = 0M(x)/0x,, and h* — vector
of the intensity of the external (uniform) magnetic field. The convention of summing
over repeating Greek indices a, §, ... = 1,2, 3 is applied.

Wanting to describe the properties of a non-uniformly magnetized ferromagnet
(with domain structure), we resort to a local system of coordinates being a function of x,
wherein the local direction of quantization is that of the versor y,. In this reference frame
the operator M,(x) is expressed as

M(x) = 7,()M3(x)+ ALIM " (x)+ A ()M (%), 3
where
M*(x) = My(x)+iM(x). @
The quantities 7,(x), A,(x) and 4;(x) satisfy the conditions [3]
TN(®) = 1, 74(x) = (%) ®)
AD)A4(x) = 3 Ax)ALx) = A x)7(x) = 0.
|4, = 3(1=72x),  [PE)x AX)], = i4,(x). ©

In order to find the approximate ground state of the Hamiltonian (1) we perform the
quasi-classical approximation by substituting in first approximation the operators M,(x)
by the classical vectors .#,(x) having a constant absolute value .#,, viz.,

M(x) = M (%) = VoM . ™

Putting (7) into (1) we get the classical expression for the energy of the system,

H {Ma: Ma,u} i E{?qa ')’a,u} = j é’{ya(x), ')’a,u(x)}dx' ®
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where

Yau = 074/ 0xp.
Taking the accessory condition (5) into account and requiring the functional E{y,, ¥,,}
to take an extreme value yields the Euler-Lagrange equation determining 7.(%),

o8 0o 0¢
@ %, @ 22(x)7,(x)- ®
Equations (9), together with periodicity conditions [4, 5] in the form y,(x +4) = y(x)
imposed on their solutions, describe the domain structure. By multiplying equations (9)
by 7.(x) and considering (5) we get the relation
o0& 0 0¢
5}; Ya=

for the Lagrange multiplier A(x).

Ve = 24, (10)

6—x,, 0Va,n

3. Transition to the spin wave representation

In order to find the energy of elementary excitations of the system we put the operator
M,(x) in the form
Ma(x) = ya(x)./l,+5M,(x), (1 1)
where, in agreement with (3),
SM (%) = 7,(x) [M3(x)— A ]+ ALIM " (x) + A ()M (). (12)
We shall treat the operator M, (x) as a “small” operator complement to the classical
vector . ,(x). We expand the Hamiltonian into a power series with respect to the operators
5M,(x) and OM, (%),

_, [0¢
H = E{‘}’aﬂs+5M¢, 'Ya,u"ﬂs'l'aMa,u} = Eo{n’ 'Ya,u}""/{s ! J‘ éy_aMzdx"'

a"(s’

- OM.5Mydx+

a,u

+1J¢z‘2 7e 8M, 6M, d 13
2 ) ° a’l’a,ua)’ﬁ,v o . o ( )

where E, stands for the E of Eq. (8) after the solutions y,(x) from Egs (9) are substituted.
Hence, in first approximation E, determines the energy of the system’s ground state. The
second and third terms in Eq. (13) can be transformed by means of Eq. (9) into the

following:
0& 06
— 0M,+ 5M M dx =
Haya Do “"} =

= [ 2.4 A[M;—M]dx. (14)
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Therefore, considering (13) and (14) we can rewrite the Hamiltonian (1) in the same
approximation as

H = Eo+2M4;" [ A[My— M Jdx+3A* [ 5M,5M ydx +
B [ OM,,5My. d. (15)

Let us now perform the Holstein-Primakoff transformation [1-3, 6] (in the first
approximation), -
M*(x) = (4ot ) a(x),

M) = (ot )a* (3),
My(x) = M= 2p0a* ()a(x). (16)
The operators a(x) and a™(x) appearing here ol;vey the:following commutation relations:
[a(x), a* ()] = 8(e—x), 23
[a(x), a(x)] = [a*(x), a™ (x)] = 0. )
Taking only the bilinear part of the Hamiltonian in the operators a(x) and a*(x) ylelds
H= Eo 4/10// ! j A(x)a™ (x)a(x)dx+ '

+34% j T(X)T5(x)dx + 3B, j T ,,,(x)r,,,v(x)dx, (18)
where
%) = (4ol A M)a(x)+ A®)a* (%)},
) = 00,005, a9
For uniaxial ferromagnets we may take the tensors 4* and B in th; form [1]
A" = Kb,3853, K <O0; St (20)
B = Cupdyr- @y

Upon choosing the tensor A% in the form (20) the ea{Sy axis of magnetization is the x;
axis. Let us also assume that the domain structure occurring in the ferromagnet is a flat
structure and that rotation of the magnetization vector takes place about the x, axis, i.e.

(%) = 7a(X1), 71 = comst,, A, (x) = A, (%) (22
We take the two-dimensional Fourier transformatlon of the operators a(x) and

@) [7],
9 = 5 Z bu(xy) exp (— ix)

K

a*(x) = NG Z by (xy) exp (ixce) (23)

K



775

where ¢ = (0, x,, x3), &k = (0, k,, k3) and S is the cross-sectional area of the sample
in the plane x,0x5. Operators b,(x;) and b;(x,) satisfy the commutation relations

[bx(xl)a b:’(xll):l = 5xx'5(x1_x’1)’ )[bx(x1)> bic'(xll)] = 0. (24)
After putting (19)-(23) into (18) we get

H=E,+Eo+ Y [ dx, {abxb_,cwxb:b,cm‘b:bi,ﬁ'

K Ly

db, db}  db} db, db?  db}
+1y +—= | +9|b + b |+

dx, dx, dx, dx, * dx, dx; .
| db, db, —
+ 9 b +b —= |}, 25)
dx dx,

B

The notation used in Eq. (25) is:

Ej = 2ugl, Y | dxi{KA3A}S+ Cid Aot A,AYCHKE+C3k2)} (26)
K Ly

@ =axy) = 2l‘o/{s[c1f-fu(x1)/-fé(x1)+ I§A3(>§1)A3(x1)],
© Ny = PoMCy
Ve = Pilx1) = do(x)) —dpo M A% 1)+ 202K5 + 2n3K3,
8 = 90x1) = 2uoM,Cr A (i) A, x),

dA(x1)
dx;

A (xy) = @7
4. The spin wave energy spectrum

The equation of motion of the operator b,(x;), with account caken of the Hamiltonian
in the form (25) and the commutation relations (24), is

db, _ » d’b, ,
% - ilh[H, b,] . —ifh {¢K‘bk+-2a.bf,c:—»b21‘11. -dx_f} (28)

To"diagonalize Hamiltonian (25) we carry out the transformation [7, 12]

b(xy) = “g(xl)cx+b;(x1)0tx,

B = ue)ed Huxden 29)
where the operators ¢, and ¢, fulfill the commutation relations.

[";m C,::] = 6mc'; [cm» cx"] = [C:, C:::I =A0' ‘ HELR (30)’
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Among other things, relations (30) lead to the following conditions for the functions
u(x1) and v(xy):

j(luxlz_lvxlz)dxl = 1’ (31)
ux(xl) = u—x(xl); Ux(xl) = v—x(x1)° (32)
The condition for the Hamiltonian (25) to be diagonal in terms of operators ¢, and ¢; is

dc
LK —_ g ; 'h
dt Lt

+
de,

i
' dt

S (33)

‘From relations (28), (29) and (33) we get the system of equations for the functions u,(x)
and v,(xy),

du, :
ol %c(fx 20 )0 ~ [ 5)— E.Ton50) = 0, (34)
2} et *
. :lx(; Y 2 (e () = [p(x )+ EJoelx,) = 0.

For our assumed plate-like domain structure with 180° Bloch walls and magnetization
vector lying in the x,, 0, x5 plane, the coefficients 4,(x;) and y,(x,) of transformation (3)
take the simple form

Ay = —if2,  Ay)(xy) = —dyis(x),  A; = $y.(x);
71(x1) =0,  7,(xy) = sin @(x4),  y3(x1) = cos ¢(xy). (395)

The angle ¢ = ¢(x,) is that between the x3 — axis and the local quantization direction
in the x,, 0, x5 plane; it is defined by Eq. (9). For this type of domain structure we have

axg) = a'(x),  puxn) = Yilx), (36)

whereby (see Eq. (27)) the coefficients of equations (34) are real. As both equations of the
system (34) have the same form, their solutions should differ only by a constant multiplier.
We take, hence, the function u,(x,) and v,(x;) in the form -

w(x1) = COAx);  0xr) = COLxy). (37

It can be shown that assumption (37) does not violate the canonicity conditions (31) and (32).
In agreement with (34), functions f,(x;) satisfy the equations

a*f, Cc® 5 CURC.. "=
e - [C(l) a(l)(xl)'l'w(l)(xl)]f;c_ [C(l) “(0)+w§c0)_ex:|fx =0

=N

a*f, c - c® ~
axz I:C(z) aD(xp)+ 'P(l)(xl)]fx'- [ a(°)+1ﬁf<°)+ex]fx =0 (38)
1 X .
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where
~ ox - ~ &y
a(xl) = ( 1~ = oc(l)(xl)+a(°), € = —,
My M1
~ Pelxy) - ~
Wl = 2 = PR (39)
1

The quantities & and P appearing in Eq. (38) are independent of the variable x;.
Each of the equations in the system (38) is of the Sturm-Liouville type [8, 9]; therefore,
the parameters C{" and C{ fulfill the system of equations

Ly
. df
0) __ b
{"Pn ot f I:‘ dx,
]

Ly .
+{d @+ [ aD0x)Ifl2dx,JCP = 0,
0

2 .
+ 17)(1)('x1)]fx|2] dx1} Cc+

Ly
&0+ [ aB)Ifl2dx }C0+
0 .
Ly

. df,
wi0ver [[| £
{"/’ ot Jv” dx,

J .

Here, the functions f,(x,) solving equations (38) form a system of orthonormal functions
defined as

2
+17)(1’(x1)lf.¢|2] dxl} CH =0. (40)

Ly
.(f) FeGOfe(x)dx; = S (41)

The system of equations (40) has a non-trivial solution when the determinant of the
system is equal to zero. This condition lets the excitation energy to be found, viz.,

Ly

. daf
& = 21, {[w£°’+ I (‘ e
1

o

2 2
+ 17’(1)(x1)|fxi2) dx{l +

Ly : %
[0+ I&(”(xl)fxlzdxl]z} . @
0

Let us yet note that the parameters C{" and C& are unambiguous because in addition to
Eqs (40) there are the equations
I~ 1cPF = 1

which stem from the canonicity conditions (31) with Eq. (41) taken into account.



778

The Hamiltonian (25) expressed in terms of the operators ¢, and ¢ thus takes the
final form
H = Ey+Eo+4H+ Y &cic,. (43)

The terms E, and E, are defined by expressions (13) and (26), whereas the term AH is
given by the formula

T Z(g’ f ox ) dxy = — Zé"xlc,ﬂ_z)iz. : (44)

The solution of the system (38) for specific physical models may present considerable
analytic difficulties. Notwithstandig, even without solving these equations a number of their
solutions’ properties can be stated. They follow from the periodicity conditions imposed
on solutions to the system of equations (9), namely,

ya(x1+2nA) = yu(xl); nh = 1: 29 39 ..

where 4 is the domain width. These conditions reduce each of the equations of system (38)
to Hill equations,

2 .
Y ) = 0 )
where
nd for h* =0
Fe (347 = F(xp); ©= (46)

2n4 for h* # 0

In accordance with Floquet’s theorem [8, 10, 117, the solutions of Hill equations are’
separated into bound and unbound ones. In turn, the bound solutions are divided into "
three types, viz., real periodical solutions of periods 7 or 27 and non-periodical complex
solutions. The so-called normal non-trivial solutions of a Hill equation in the form (45)
satisfy the condition

fx(xl +1:) = afx(xl)’ (47)
with the characteristic factor o given by the equation [10, 11]
6>—ac+1 = 0. : (48)

The parameter a in Eq. (48) is real constant predetermined by the numerical parameters
appearing in Eq. (45). The roots o, and o, of equation (48) fulfill the condition 6,0, = 1.
Equation (45) has a bound solution in the following cases:

A) 0y =0, = 1 —real periodical solutions with period © equal to the period of the
function F(x;) in Eq. (45);

B) o, = 0, = —1 —real periodical solutions with period 2t;

C) o, =0, — non-periodical complex solutions.

The demand for the solutions to Eq. (45) to be bound (|, | = |o,| = 1) is the condition.
determining the excitation energy &,.
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5. Concluding remarks

When considering a domain structure of the Shirobokov type deformed by the action
of an external magnetic field [4, 5], the function F,(x;) in Eq. (45) is expressed in two
specific cases as

wsngx;+17* o sn gx,+1
F.(x;) =B — ! +B B; ., 49
x( 1) l,xl: sn qx1+w | 2,k sn qx1+w 3,k ( )
or
wcn gx, +17 wen gx;+1
Fi(x;) = By [ ——— | +Bs. Bs, (50)
cngx;+o | cngx;+w

depending on whether the external magnetic field acts along the easy axis of magnetization
(uniaxial ferromagnet) or perpendicularly to this direction and in the Bloch wall plane.
In the simplest case, when the external magnetic field is equal to zero, Eq. (45) reduces
to the Lamé equation

d*f(x
P TR ok sn gy By i) = 0 (51
1

This case has been studied in Refs [7, 12].

We have shown here that the periodicity conditions imposed on solutions to the system
of equations (9) lead the system of equations (34) to Hill equations. Hence, in ferromagnets
having domain structure there may occur only three types of relationships between the
energy of elementary excitations ¢, and wave vector, which correspond to three bound
solutions of equation (45) scrutinized in the preceding section of this paper.
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