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SPIN-LATTICE RELAXATION IN CRYSTALS

PART II. CRYSTALS WITH TRIGONAL AND TETRAGONAL STRUCTURE
By H. SzymczAk

Institute of Physics of the Polish Academy of Sciences, Warsaw*
(Received June 28, 1972)

The theory of electron spin-lattice relaxation has been elaborated for crystals with
trigonal and tetragonal structure. Single-phonon processes are discussed as well as two
relaxation mechanisms: dipole and quadrupole mechanisms. The calculations take into
account the elastic anisotropy of the medium. It is shown that the neglection of elastic aniso-
tropy results in considerable errors in the calculation of single-phonon transition proba-
bilities.

1. Introduction

In the previous paper [1] the author has considered the influence of elastic anisotropy
of the medium on the probability of single-phonon spin lattice interaction. It has been
shown there that the treatment of cubic crystals as an isotropic elastic medium (isotropic
approximation) leads to considerable errors. The influence of elastic anisotropy in cubic
crystals on spin-lattice relaxation is described by the tensor 4;; (with three components
Ayi, Ay, Agg) introduced in Ref. [1]. For the majority of cubic crystals for which the com-
ponents ¢;; of the elastic stiffness tensor are known, the components of the tensor 4;; have
been calculated. One can expect that in crystals with symmetry lower than cubic the elastic
anisotropy of the medium will play a still greater role in spin-lattice processes.

2. Spin-lattice relaxation in crystals with trigonal and tetragonal structure

The processes considered in the present paper are one phonon spin-lattice processes
in crystals of trigonal structure (groups Ds, Cs,, Ds,) and tetragonal structure (groups
Dy, Dy, D4y, Dyy). Similarly as in Ref. [1] the following two spin-lattice relaxation
mechanisms are taken into account:

a) dipole mechanism with the Hamiltonian

Hop = Zkl FijaS:H e €y
1)
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b) quadrupole mechanism with the Hamiltonian
Hsp = Zk‘,l GijuS:S jen (2)
ij
where e, is the strain tensor, S; the spin operator components, Fy;,; and G,;, the com-
ponents of the magnetoelastic tensor.
The tensors Fy;y and Gy, are often written in the form of second rank tensors F,g
and Gy (x, = 1,2,...,6) in the six-dimensional Voigt space.
" The probability of transition in unit time of an ion from the i-level to the j-th level
with a simultaneous emission of one phonon can be written in the form (see Ref. [1]):
a) in case of the dipole model.

where
3 ho
w” exp T
d(w, T) = — -

h
32n%oh (exp Ec_; - 1)

o — is the density of the crystal, @ — the resonance frequency, H — the external magnetic
field vector, I',,, — the second rank tensor in Voigt’s space with the components

I mnpr — Z AuﬂyéF mnccﬂF pryé
afyd

Z : - dQ
Aupys = J (ephg+ephy) (8545 +E54,) T ©)
k)
n

k, " the wave vector of the phonon and its polarization vector; u the index enumerating
the particular phonon modes (u = 1,2, 3); v; — the velocity of phonons with given k&
and polarization p

(SH), = S,H,, (SH), =S,H,, (SH); = S,H,
(SH), = S, H,+S,H,, (SH)s = S,H,+S,H,,
(SH)s = S, H,+S,H,
b) for the quadrupole model
W; = &, T) %Amn<il SOmli> Gl S)li> )

where A, —is a second rank tensor in Voigt’s space with the components

Amnpr . Z AaﬂﬁGmnaﬁGpr'y&
apyé

S);=8% (8:=5., (8:;=57 (5s=S5,S.+5.S,,
(S)S . SXSZ+Ssz5 (S)G = SxSy+Sny.
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The main problem for both models under consideration is the calculation of the
components of the tensor 4,4, Owing to the symmetry properties of the crystal this
tensor may be written as a tensor 4, in six-dimensional Voigt space. In the isotropic
approXimation the tensor A,,, has two independent components 4, and A4,, and can
be presented in the form:

"A11A12A120 0 0 {
1245 41,0 0 0 |
A1 A1 4,0 0 0 ©
0 0 0 A,0 0 |
0 0 0 0 4,0 |
00 0 0 0 A

A44 =%(A11 _A12)

(Amn) =

If the medium is treated as elastically isotropic, it is possible to calculate the components
A1 1 and A12:
A 16n /3 + 2
T v

lén (1 1
A12=? == 3 ™

where v, and v, are the velocities of the longitudinal and transverse wave, respectively.
The easiest way to calculate these velocities is when the direction of propagation of the
phonon coincides with the Cj axis (in trigonal crystals) or the C,-axis in tetragonal crystals.

Then
C 1/2
. (_3§>
e

1/2
5 = (9—) ®
0

For crystals with trigonal symmetry (D;, Cs,, D) the tensor A, has six independent
components and can be written in the form:

I:All A12 A13 A14 0 0 |
iAIZ All A13 _A14 0 0 i
Ays Aj3433 0 0 0 | ©)
‘IAH- ~A1,0 As4 0 |
0 0 0 0 dudn |
0 0 0 0 Audd,—A.,)

(A-mn) =

o

The results of calculations of the components of the tensor A, for trigonal crystals are
given in Table I. The calculations have been made using Eq. (4)and are based on the values
of the components of the elastic stiffness tensor given in the papers: [2] for Al,O;, CaCO;
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TABLE 1
Components of the tensor Ay, for crystals with trigonal structure (in units 10~28 cm=5 sec®)
A1203 CaC03 NaN03 I Sio;
Ay 0.6506 , 15.55 14.67 ‘ 10.31
Ass 0.5666 28.59 52.82 ' 6.62
Asz —0.3321 —6.77 —4.72 ~3.62
Ays —0.2111 | —-9.39 —12.36 —-3.03
Asa 0.1095 8.87 —9.25 —2.74
Aasa 0.6066 17.30 21.60 4.38
Ase 0.4913 11.16 9.69 6.97
TABLE 11

Components of the tensor Ay for crystals with trigonal structure calculated by means of the isotropic
approximation (in units 10-2® cm~5 sec’)

A]zOs Ca.C03 Na.NO3 Sio;
A 0.8979 14.38 33.49 4.07
A —0.4005 —5.47 —9.25 —~1.22
Asa 0.6492 ! 9.92 21.37 2.65

and Na,NOj, and [3] for SiO,. For the sake of comparison the values of these components
calculated in the isotropic approximation (Egs (6)—(8)) are given in Table II. It follows from
the comparison of these two tables that the isotropic approximation is not suitable for
the‘descripti:on of relaxation phenomena in trigonal crystals. It gives both incorrect values
of the particular components of 4,,, and of their ratios as well. The relationships predicted
by the isotropic approximation: A;q = Az3, Asp = Ass, A1a =0, 244, = A —Aq
are not satisfied for any of the investigated trigonal crystals. Comparatively smallest
deviations occur in case of Al,0; crystals.

For crystals with tetragonal symmetry (D,g, D4, Day, Day) the tensor A, has six
independent components and can be written in the form:

|A12 A1 430 0 0 }
A13 A3 4330 0 0 ‘
00 0 4,0 0
0 0 0 0 A0
0 0 0 0 0 A

(Amn) . (10)

Table III presents the results of calculations of the components of the tensor A, for
crystals with tetragonal symmetry. These calculations have been made using the values
of components of the elastic stiffness tensor given in Ref. [2] for ZrSiO,, Ref. [3] for
BaTiO,, Ref. [4] for TiO,, Ref. [5] for ZnO and CdS; and Ref. [6] for MgF,.

The values of 4,,, calculated on the basis of the the same data but using the isotropic
approximation are given in Table IV. The comparison of the Tables III and IV implies
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Trigonal symmetry, groups Cj, Cs;
F, = Fay, Fi3 = Fss, Fg; = —Fis, 2F66 = F11—F12, Fy; = Fs,

groups C3w DSa D3d
Fpp, = Fyy, Fi3 = Fo3, F3 = Fsj, 2Fge = F11—F1z,
Fis=Fi,= Fus = Fu = Fg; = 0.

Tetragonal symmetry, groups Cy,, Dyg, D4, Dy,
Fy, = Fy1, Fi3 = F33, F3; = F3;
Fiy =F5 =Fi6=F, = Fys =F46 =Fg; =0

groups Cy, Sa, Cay

F, = F,,, F13 = Fp3, F3; = F3,,
F14 = F15 = F41 = Fu6 = 0.

Hexagonal symmetry, groups Cgs, Csp, Cg;
Fyy = Fyy, Fi3 = Fy3, F3; = F3;, Fgy = —Fyg, 2Fsg = F1;—F,
Fis=Fis=F4 =Fus=0

groups Dy, Cs,, Dg, Dg,
Flz = F21, F13 = F23a 2F66 = F11—F1z‘

In the general case described by Eq. (11) the tensor I, has 14 independent com-
ponents:

'_Fu Ty Tys Ty Tis T
I'ya I'yy TIas =Ty —Tgs '—F16I
'y TI';s I'ss O 0 0 |

(12)

() = Fi=li 0 Tu La T
F15 _FIS O F45 F55 1-'56'
' —I'te O I'ye TI'se T'gs

Analogous calculations can be done in case of the quadrupole mechanism (tensor 4,,,),
however, in this case the form of (12) is subject to changes owing to the constraint imposed
upon the components of the magnetoelastic tensor G,,:

i Gy = O. (13)
m=1

The constraint (13) gives rise to a decrease in the number of independent components
of the tensor 4,, to 11, since

Ay = Ay3 = —(Ay1+A4y;)  Azz = —244;. 14y
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TABLE 111

Components of the tensor Am,, for crystals with tetragonal structure (in units 10-28 cm~3 sec®)

TiO, ZrSi0, BaTiO;
Ay 5.527 102.61 30.32 36.90
Ass 1.287 192.60 70.19 30.12
Az —3.994 —42.72 —11.06 —21 27
Ajs -0.773 —19.77 —24.84 -13.71
Aag 1.327 264.70 '18.61 | 30.66
Age | 0.735 188.35 6.69 | 29.05

Cds

‘ 298.70
196.60
—185.88
—95.08
261.45

| 242.29

Mng

14.92
5.61
—10.00
—2.85

' 4.54
1.98

TABLE v

Components of the tensor Am, for crystals with tetragonal structure calculated by means of the isotropic

approximation (in units 10-28 cm~5 sec®)

BaTiO;

TiO, ZsSiO4 ZnO Cds MgF,
1.536 482.07 23.92 44.88 405.93 576
-0.703 —213.37 —10.26 —21.45 —197.97 —2.52
1.119 1 347.72 © 17.09 33.17 301.95 4.14

that, similarly as in the case of trigonal crystals, the isotropic approximation used for
spin-lattice relaxation gives incorrect results also in the case of crystals with tetragonal
symmetry. From among all the crystals considered -the isotropic approximation .is com-
paratively best describing the ZnO crystal.

"' After determining the components of the tensor A,, it is possible to determine the
tensors Iy, and A4, The magnetoelastic tensor F,, for cubic, tetragonal, trigonal and
hexagonal point symmetry can be written in the following form:

|‘ Fii Fip Fis Fiu Fis  Fy

Foy Fiy Fo3 —Fi4 —F;5 —Fig
F,) Fyy F;, Fi;3 0 0 0

" Fuy =F4 0O Faoy Fys F46‘

—Fus. F46 0O —Fys _ Fao  Fy

‘ Fey —Fsy 0 —Fi5 F,4 Fge

(11)

" The components of this tensor satisfy the following relationships for the particular
groups of symmetry: '
Cubic symmetry, groups O, T,, O,

Eu = F33, Fay =

Fip =Fis = Fi6 = F4; = F45 = F46 = Fg;

groups T, T},
Fyy = Fa3, Fus =

Fe, F12 e F13 b F21 = F,y = F3y = Fsz
=0

Fse, F12 = Fy3 = F3;, F13 . F21 = F32

Fi4 = Fi5 = Fi6 = F4y = F45 = Fa4 = F5, = 0.
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In crystals with low symmetry one should expect the occurrence of strong dependences
of the relaxation times on the angle between the external magnetic field and the crystallog-
raphic axes.

Such dependences may provide essential source of information about the components
of the magnetoelastic tensor provided that the elastic anisotropy of the medium is properly
taken into account. In the simplest case of an ion with the effective spin S = } and spin
Hamiltonian with axial symmetry:

H = Bg.H,S, +Bg, (H.S:+H,S,) (15)

the expression for the probability of single-phonon transition for the magnetic field
“in the xy plane (H, = 0, H, = Hcos ¢, H, = H sin ¢) has the form:

H? : .
Wi, = ¢, T) e {3y —T1,—2l ) sin® 29 —T'y 5 sin 4+

+(T44—T's55) sin® ¢+ 55+ g6} (16)

It follows from Eq. (16) that the elastic anisotropy of the medium influences not
only the values of Wy, but also the character of angular dependences. Thus, e.g., in the
isotropic approximation for an ion in a crystal in a site with symmetry D,, I';jg = 0
whereas in reality I';g # 0. Similarly for crystals with symmetries Dj, C3,, D34 and ions
in sites with the symmetries D;, Cs,, and Ds; we have in the isotropic approximation
I —Ii,—2l¢¢ = 0.

In reality we have in these conditions:

Fll_F12_2F66 = 8A14F14(F11_F12)‘

3. Conclusions

The paper gives a method of taking into account the elastic anisotropy of the medium
in the spin-lattice relaxation theory. It is proved that the neglection of anisotropy in the
so-called isotropic approximation leads to large errors in the estimation of probabilities
of relaxation transitions. These errors prevent accurate determination of components
of the magnetoelastic tensor from the measurements of the relaxation times in crystals.

The author is much indebted to Professor R. Wadas for many interesting discussions
in the course of this work.
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