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ON PARAMETERS OF SPIN HAMILTONIAN FOR 34" IONS.
Co** IONS IN TETRAHEDRAL SYMMETRY

By C. Rubpowicz
Institute of Physics, A. Mickiewicz University, Poznan*
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An extension of the previously given model for perturbation treatment of spin Hamil-
tonian parameters is discussed. Contributions to the parameters for 34 ions in tetrahedral
symmetry are derived. Quantitative results for Co®* jons in garnets reveal the importance
of the fourth order axial term F. -

1. Introduction

In an ealier paper (to be referred to as I) we derived general expressions for spin
Hamiltonian parameters adopting a new technique based:on tensor algebra [1].
- We used, in I, a “model” Hamiltonian of the form:

W= Hotil- S+up@+28) - 1, (1)
where -
Ho = Hgi+Hcr. o , ()]

By using in (1) a simplified form of spin-orbit coupling, we limited Qur'cohsiderations
to a space  od states arising from the lowest free-ion (f.i.) term 2°+!L,

In the present paper we discuss an extension and application of the results of I. In
Section 2 we discuss the effect of ““mixing of states” in relation to the formalism of 1.
In Section 3 we derive the relevant expressions for a 3d° ion in a tetrahedral symmetry
site. Expressions for the fourth order parameters have hitherto not been given in the liter-
ature.

2. Effect of mixing of states

_ 3d" ions fall into one of the two following groups:
a) ones possessing the ground term **'D (n = 1, 4, 6, 9) and no higher term with the
same spin multiplicity (25'+1),
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b) ones possessing the ground term ***'F(n = 2, 3,7, 8) and one 25*'P term with the
same S among the higher terms.
An exception from the above are the 3d° ions being ®S-state ions.

‘A crystal field Hamiltonian #¢p in (2), when treated as a perturbation to ,}ffl,
can mix only those zero-order states Izs“l"a,,] of Jff, which transform according to
the same representation I', and have the same S-number [2].

Thus, for ions (a), the zero-order states can be mixed by J?CF only inside a manifold
of states arising from a given term. The dlagonahzatlon of #, is then relatively simple.
If this is the case the proper states of #, will be linear combinations of states
|#5*1r,(L)] with L and S fixed only.

When limiting considerations to the space €, the results of I apply directly to this
case.

For ions (b), the exact diagonalization leads, among others, to linear combinations
of states arising from different terms, as e.g.

T (F)]  and  PSTIM,(P)]. ©)

An approximate method of diagonalization of the relevant secular determinants is developed
in [3]. The above procedure leads to so-called “‘mixing of states” [4].

The extension of the space © to include states arising from the higher 25*!P term
should improve the results. But then we have to take the perturbation operator in the
modified form:

= (ApL+ApLl) - S+ pug[(L+L)+28] - H, (@)

where Ap and Ap are spin-orbit coupling constants for the F and P term, respectively. The
operator Loperates only on states |I',,(F)], while T acts only on [[p(P)].

The form of Eq. (4) ensures that matrix elel:l\lentf of Vinside the basis of orbital states
will still take the form of a scalar product like (4 - S). Thus, the formalism of I based on
tensor algebra can be directly used in this case. The sense of the vectors f,i ;changes, while
the structure of the final expressions remains the same. Only the constants A has to be
omitted from the expressions in question, as it is now absorbed into f,eff.

The inclusion into our considerations of other higher terms 25 +1L’ with different
spin multiplicity is possible when using the exact form of spin-orbit coupling. This has
been attempted for the second order parameter D with regard to 73+ ions in Al,O5 [5].

3. The case of 3d® ions in tetrahedral symmetry

Recently, Sturge et al. [6] have investigated Co ions doped into YGaG and YIG
compounds. The spin Hamiltonian used by them included g |, g, D and a/6 conventional
terms. A fourth order axial term F/180 was neglected. The following expressions for D

and a were given by them:
4 1 4
D= —-2|———|-2—, 6]
dp  Ag Ar
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a = —4D?/4,+terms of order A%/43. - (6)

The appropriate energy level diagram for a Co3+ ion in a tetrahedral symmetry site is
shown in Fig. 1.

From the optical data [7], it is known that 47 = 9 200 cm™, 4, = 8 300 cm™?,
Ap = 5200 cm~'. The value of 4, is not known for Co3+ ions but was believed [6] to
be in the range 1000 cm~ to 2000 cm—*.

The merely tentative Eq. (6) was used for a crude estimation of 4, as about
1200 cm~* [6].

Ip
.
L} by s
A
57—2 AE
5Bh
Y
Ag
°D
A
A
5E AA
SBg
Free
ion Ty S

Fig. 1. Energy level diagram for tetrahedral Co3+ in garnets (not to scale)

Since the Co" ion (3d°) belongs to group (a) of 34" ions, we can afford to carry out
a more detailed analysis.

General formulas for spin-Hamiltonian parameters applicable to any symmetry are
derived in I and will not be given here. Using moreover the equations of Appendix B
in I and taking into consideration the relevant energy-level diagram of an ion, one can
directly obtain any desired contribution to the parameters.

In this paper, the zero-order wave functions are taken from [8] and a secular determi-
nant for the ground B, and l}\igher B, states is diagonalized (see Appendix A). Matrix

elements f,ij of the operator L inside a manifold of states arising from the 5D term are
evaluated in Appendix B.

Along these lines, we obtain for g, g); and D the same expressions as in [6] (except
for the term 44%/4; in (5)).

The third order contribution to D is obtained by us as:

1
Apdy’

Dy = —(3+ /343 (72
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Using A = —110 cm™! [6], we obtain D3 & +0.15 cm™, while D from the second order
expressions is estimated as 7.8 cm™ (without including the term 44%/4;). This ensures
that a fourth order correction to D is completely negligible.

We obtain the third order corrections to the g-tensor as:

A (&), =0
g = -— g =
3| A4, 31
2,2 4 1
(gg)“ = - ‘E (g';’:,)l = -1 (Z% + A_,Zz) )]

Eq. (8) gives for both g, and g, a value of —0.002, comparable with current experimental
error for g and g, . This ensures that a fourth order contribution to the g-tensor is irrele-
vant too.

The fourth order parameters BSY of spin-Hamiltonian were defined in (I) as:

AP = Z( 1)*~*BP0%) ©)

where the 52""’5 were components of an operator equivalent (for definition, see I).
From our general formulas, the following expressions are found for the B,(f)’s:

@ _ 8 32 2 8 3
¢’ == + -
35,/10 10 A3 T A AR A4

P I B
5J77 4,42
12 1

BY) = — % — %, 10
507 A,4%° (10)

where u and v describe a mixing of ]B;’] and |By] states by the crystal field Hor (see
Appendix A). .

- On neglecting this mixing effect, u = v =1 and BY) = B(ﬂ = B{". For this case,
the relations between our Bff”s and the conventional parameters a and F, as established
in I, are:

a=3,/70B .
= $[5B§"— 70 B, (11)

From Egs (10) and (11), we see th.éft no contributions like 1/434 Ay or 1/4,44% can
enter into 'the expression, for .a.
" On inserting into Egs (10) the (above stated) values of 4; and A, we find the values
of a and F given in Table I. i 3
Our calculations yield F larger than a, provmg the former’s real importance. The
Value of |a| = 0.66 cm™ obtained by EPR [6] is by one order of magnitude larger than
our result.
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TABLE 1
Values of parameters B.", B a and F (in cm™)
Ay fem™1] 1.000 1.200 2.000
By +0.0018 +0.0019 +0.0021
B —0.0019 —0.0016 —0.0010
a —0.048 —0.040 —0.025
F +0.113 +0.103 +0.084
TABLE 11
Parameters @ and F for Fe*tions in (d) sites in some garnets (in cm™)
Host a F References
YAIG 0.0075 —0.0110 9]
LuAlG 0.0084 —0.0104 [9]
LuGaG 0.0065 —0.0047 91 !
YGaG 0.0062 —0.0040 [10]

For comparison, we refer in Table II to some

ions in tetrahedral (d) sites of garnets [9], [10].
Although the data of Table II are not directly comparable with our results, they
nevertheless confirm the fact that the relation F > ¢ is quite reasonable in the present

case. Our detailed analysis shows that this is so for Co3* ions.

other experimental dates for Fe3*

In concluding, the exceptionally large value of a obtained in [6] can be attributed
to the incorrect omission of the fourth order axial term F in the spin-Hamiltonian.

The author is indebted to Docent L. Kowalewski and Dr T. Lulek for their valuable
discussions. The author gratefully acknowledges the critical reading of the manuscript
by Docent L. Kowalewski.

APPENDIX A

The basis of zero-order states for the B representations of the group S, is [8]:

1Bs]

IBr] =

_ 1
_\/:_2
i

Ne

(|2a 2] + l27 _2])9

(12, 21— 12, —2]).

(A1)

The diagonalization of a secular determinant of #cp of symmetry S, yields:

iBg] =

1

J2

)2, 2]+0(2, —2)),
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IBy] = —= (ul2, 2]-0[2, —2]), (A.2)

1
V2
, v = e where 0 is determined as:

2[By|# crlBi]
[B|# celBy]—[Br #crlBy]

and u = e %

tan 20 = (A.3)
APPENDIX B

The followmg definition for a vector is adopted: A= > A(l)»“] and the matrix
elements L;; are evaluated in spherical coordinates [11]:. ¢

B, A B, E, E,
B, ‘ . . —2¢f +zve[1] +iue']
A . . —1\/3»[1] —i /3¢
B, +2e[1] : +ve[1] —ue']
E, | —iue"] +i \/3 et +uet!] .
E, ' —ivel] +i /3 e[_” —vel!]
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