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The direct adoption of tensor algebra in pertufbation theory is proposed. Formulas
for the rerupling of invariant products are established and applied in the derivation of spin
Hamiltonian for 34" ions. The resulting Hamiltonians are expressed in the operator equiv-
alents O®, for which tabulated matrix elements are available. Expressions for spin Hamil-
tonian tensors up to the fourth order in spin variables and applicable to all symmetries are
derived. A simple procedure for deriving higher-order Zeeman terms is outlined.

1. Introduction

It is well known that group theory [1] and tensor algebra [2] can be exploited in
the construction of spin Hamiltonian strictly on symmetry arguments, but the systematic
use of tensor algebraical methods in the derivation of spin Hamiltonian by means of
perturbation theory appears novel.

Most authors deal separately with any particular paramagnetic ion of 34" configuration
when using perturbation theory. Only a few attempts have been made to derive general
formulas for spin Hamiltonian tensors.

The previous attempts have been carried out by standard perturbation theory [3]
and by a more serious formalism of effective Hamiltonian [4], in both cases up to the
third order of perturbation theory. Those results were limited in some sense. Firstly,
spin Hamiltonian containing terms up to the third order in spin variables is insufficient
for ions with spin S > 2 [5]. Secondly, using only vector algebra, Ehe pre\f\ious authors
[3], [4] succeeded in obtaining final expressions only in the form § - D - §. Moreover,
they were quite unable to derive the higher-order Zeeman terms, in general arising still
from the third order of perturbation theory. Thirdly, they resorted to a simplyfing relation
of rather limited validity (see discussion on Eq. (18)).
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In this paper, we propose a method of adopting tensor algebra diréctly in perturba-
tion theory. On recoupling of the invariant products arising in crude perturbation expres-
sions, we get highly compact final expressions without the usual amount of effort. We
thus extend the derivation of spin Hamiltonian up, to the fourth order of perturbation
theory to cover the cases of 3d" ions with spin §' = 2. The method proposed avoids the
other above stated limitations.

The paper is conceived as follows. A model Hamiltonian is outlined in Section 2.
In Section 3 we develop the necessary formulas of irreducible tensor algebra. In Sections 4,
5, and 6, we derive the relevant expressions from the second, third and fourth order of
perturbation theory, respectively. Section 7 is devoted to symmetry considerations.

An advantage of our methods resides in the expressing of the general spin Hamiltonian
directly in the operator equivalents O®[6], for which matrix elements are tabulated in
the literature [7].

2. Hamiltonian

In perturbatlonal approach to the derivation of an effective Hamiltonian #, the
proper choice of a “real” Hamiltonian # = #,+ V plays the central role. The effective
‘Hamiltonian # is constructed so as to operate in an arbitrarily choosen subspace Q,
of the vectorial space @ of all eigenstates of H#o. The space Q, is spanned by the eigen-
states belonglng to a specified eigenvalue &,. The eigenvalues of o have to be the same
as those of # inside the manifold €, and, in practice, are easier to obtain.

For an iron group ion in a crystalline environment, the Hamiltonian can be written
in general as:

H = ot Hso+ Hget+ Hep+ Kss+ Hyt+ H 4, : )
The terms in (1) are arranged in decreasing order of importance. #o represents the Hamilto-
nian-of an isolated ion, including the strongest part of the crystal field, with symmetry
of a point group Go. Next, A¢p represents the remaining part of the crystal field, of
lower symmetry. The other terms represent the effect of spin-orbit coupling Hso, Spin-spin
Hss, and hyperfine A, interactions. 7, is the Zeeman electronic (¢) and nuclear (n) term.

The eigenstates of #, in (1) are tensorial products of the spin and orbital parts. The
zero-order orbital parts |vI,;] can be taken as approprlate linear combinations of eigen-

states of the orbital angular momentum operator L[8]
Il = Z ay;lvLm], ¥)

where I, labels an irreducible representation of the point group Go, j labels arow of I,
‘and v is an additional quantum number. The numerical coefficients ay; are extensively
tabulated in [9].

Often, it is sufficient to confine #, to the manifold of states arising from the lowest
25+1] free-ion term. Within this manifold, one can rewrite the first terms of (1) in
a simplified form:

>

A

= Bt V= Bo+iL - S+un(L+25) - B, 3)
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where L and S are the total orbital and spin angular momenta, His an external magnetic
field. Thus, here, the space Q is of dimension (2L+1) - (2S+1).

In this paper we consider the derivation of general spin Hamiltonian on the basis
of the ‘model’ Hamiltonian (3) when the ground orbital state of H, is nondegenerate.
Then the subspace Q,, in which the spin Hamiltonian H operates, is of dimmension
(2S+1).

A similar simplification as in Eq. (3) is possible for the last three terms of Eq. (1) [10]
An extension of the presented tensorial method to treat situations when the term J?CF
is relevant, i.e. of a magnitude comparable to .?fso or #H,, is straightforward.

3. Tensor algebra formulas

In the problem under consideration, there occur various multiple products like
(A S) (B S) ., up to the quadruple product in the fourth order of perturbation theory.
A, B, ..., stand for a vector being a matrix element of the operator i, or for the magnetic
field vector H. A mathematical framework for the separation of variables (4, B, ...,)

on one side and (S, S, ...,) on the another is provided by irreducible tensor algebra.
For the recoupling of a product of invariant products, we can use a specialized form
of the general equation [11]:

(A(ix) . S(j1)) (A(jz) . S(iz)) (A(fa) . S(js)) (A(j4) . S(ia)) —
— z ([A(jl) % [A(iz) % [A(is) % A(i4)](}'34)](j234):|(i) %

J34j234] .
x:[s(fl) X [S(fz) X [S(.is) X S(i4)](j34)](i134)](j))' (4)

The recoupling can be carried out as well in any other alternate coupling scheme, as
e.g.(J12J123) instead of (jzaj23a)-

In this paper, we adopt the basic definitions of tensor algebra in accordance with
Ref. [12].

From Eq. (4) any desired product can be obtained by a stepwise procedure. The
tensors involved in this procedure are defined in Appendix A.

We find the following recoupling expressions:

— double product:
AW - sWy (M. S0y = %_(;1' E)S(S+ D+

(AxB)- §+BTY - 0@, ©)

L
2

— triple product:
(A(l) . S(l)) (B(l) . S(l)) (C(l) . S(l)) =

302' (Ex 6‘)'f'jé,u;c ’ 6(1)+33X5425)c 0P+ a3 X 09, ©)
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where i
Rupe=¢e((A-B) C+AB - C))+e,(4-C) B

B =SS HD+ Ao e = 2 SS+D)
N 1
82 =1SS+D-% &= —i<1+ %) )

— quadruple product:

(A(l) . S(l)) (B(l) . S(l)) (C(l) . S(l)) (D(l) . S(l)) =
= “2180A0R30D+ {301‘1(3 (CXD))'l' = (A XRBCD)+83“12ABCD} ON(”TI'

{8 TS + s3a2Zf,23CD +0,)2 VA BCD - 0® +
{e303Z3cp+ 393V hen) - 0¥ +a3y,V, (41)300 0(4) S ®

It is easily verified that Eq. (5) yields the same vectorial identity as the one used in
[4] when applied to its left hand term:

A - 8B-S)—(B-8)(A-8)=i(dxB)-S. 9)
However, in perturbation theory calculations there also occur problems concerning
a single (4 - S) (B - S).
~ Egs (6) and (8) lie beyond the scope of vector algebra, and provide a method for
extending perturbation theory and for dealing with related problems.

4.  Second order spin Hamiltonian

For details of the perturbatlon theory formalism, we refer to [4]. An effective-Hamilto-
nian up to second order in V is given by

HPD = PyVP,—P,VKVP,. 10)

The operators P, and K are defined as:

lac] [

Py =Y, |a][al, 11

where the states |a] belong to the space 2, and the |&]’s to the space Q' being the difference
of Q and Q,, whereas 4, = &,—¢&o.

Considering the model outlined in Section 2, we have the set {|a]} being the product
[0.I';] ® {IS], ..., |—ST}, and the set {|o]} being {br,;1} ® {IS], ey | = ST}, with

v # vy,
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Inserting (3) into (10) and resorting to Eq. (5), we find:
AP = BP0+l - g §+{H, (12)

where the constant terms are omitted, and

1 ; :
1 - - - -
g=2-1 Z 1 (LoaLao + LaoLos) 14
1 - - -
{H*} = —u3 z & G Low LH*+ T - H®}, (15

[

The second order tensors have the following meaning:
T = [IYxIR]P;  H® = [HOx HVI, @)

Above, summation extends over all excited states |vI,;] belonging to ', i.e. over the
appropriate v, a, j.

The symbols L;; will denote throughout this paper vectors which are matrix elements
of the operator L,

GIL] = Y [IEP1e = Ly = LY. a7
q

If the |i] and |j] are taken to be |vI,;]’s and the latter are chosen to be real then, since L
is an imaginary operator, we have [4]:

f‘ij = _‘i:ﬂ and -i:ii = 0. (18)
But if the [vl,;] are chosen as complex, then the first relation in Eq. (18) is no longer
valid. Thus, in the derivation of spin Hamiltonian, we have not used it. For a proof, we
consider a simpler example. Let us take the eigenstates of an operator L to be Im] = |i]

and |m'] = |j] in a complex basis. We have

[m]flm'] = Z [m|L(1)|m ]e[” ZA(I) [1] (19)
q
[ Lim] = 3 [ L0 1m]egt) = 3. BVeG™. (20)
q

From hermicity of i, one finds:
BY) = (=D'(AP) or  BY = (=114 @n

Neither of the relations (21) reduces simply to the first relation of (18).
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5. Third order contribution
The third order contribution to an effective Hamiltonian is given by
H# = PoVKVKVP,—1{PVK>VPoVPy+P, VP, VK>V P,}. (22)

~ On inserting (3) into (22), one obtains terms of order A%, A%up, Auj, and uj. The
last two terms will be omitted from our calculations, whereas we discuss the former two
~1rr

separately as 25 and #5 +#3 .
The term of order A3 is:

Hy =2 z AIA (Log* S) (Lug * 8) (Lo * 5. (23)
ar#p i e
Mai(ing use of Eq. (6), we can transform (23) into a sum of four terms like: a constants,
0D, 0 and 0. For reasons of symmetry O and 0 vanish (see Section 7). The
only relevant term can be the one related with 0 ; it constitutes the third order contribu-
tion to B®.
Thus, we find:

A ON, (24)
and
1
s
. Aa4ﬂ s
aFp

where A, B, C, stand for f«)a, iap, iﬂo, respectively.
The terms of order A2uy are of slightly more complicated form. There are two different
types of single component terms, like:

(H-4)(B-8)(C-S) (25)
and

(H-S)(4-S)(B"-S). (26)

Making use of Eq. (5) for terms like (25) and of Eq. (6) for ones like (26) when restricting
ourselves to terms related with O, we find:

Ay = ppH - (g5+2%) - S, @7
where

i 1 - - - - - - - - -
g5 = B} 2 E A {Lpo(Log X Lyg) + Log(Low X L)+ Loo(Lap % Lgo)} (28)
a“ B
a1 #B

B o ,
gg == '12 z P {(LOaLaO'I'LaOLOa)'_ 2(L0¢ : Lao)j}' (29)
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By applying the identity (A18), we obtain g3 in a more compact form:

i 1 - —_ - - - - -
g5 = 5 2 Z 2.4, {2L,5(Lo, % Lgo)— Ly * (Log X Lgo) S 3 (30)
a#p

F in (29) and (30) is the unit dyadic; when defined in spherical coordinates, it is:
S = S0 (D)

The tensors g% and g5 constitute the third order contribution to the usual g-tensor.
On the other hand, taking in the above procedure the part related with 0 in (26),
one can directly obtains other terms like (HO®), for example:

#Y o X 0P (32)
These terms (32) give rise to a higher-order Zeeman term of spin Hamiltonian. However,

the transformation of (32) to the form derived strictly by symmetry arguments [1] [13]
is less straightforward.

6. Fourth order spin Hamiltonian

The fourth order contribution to an effective Hamiltonian is given by:
H, = —P,VKVKVEKVP,+3{Po,VKVK*VP,VPy+
+P,VK*VP,VKVPy+P,VK*VKVP,VP,—
—P,VK3*VP VP,V P,+h.a.}, (33)

where h.a. stands for the Hermitian adjoint of the preceding terms.

By inserting (3) into (33), one obtains terms of order A%, A3uz, A%u3, A3, and pj.
The last three terms will be omitted from our calculations, whereas the former two will
be discussed separately as o, and A +#".

From Eq. (8), one notes that #., can be further decomposed into two relevant parts;
namely a fourth order contribution to the parameters B® anda fourth order term B® : 0@,
We assume a negligible role of the former part of #,, and consider only the latter part.
This assumption has been confirmed by numerical calculations of the magnitude of the
parameters in question for some concrete situations [3], [14].

The fourth order spin Hamiltonian is finally found to be:

D = B 5(4), ' (34)

where the parameter B is of the following general form:

1 ‘ 1
B0 et ) 0= ) g i
a*p
1 1 1 :
+1 ) — + — V,f4)— 1230 35)
22(42:4;2 AaAﬁ) 44,4, | ( )

a¥*p T a#FpFEY
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The fourth rank tensors are the ijgcp’s defined in-Appendix A, where 4, B, C, D, stand
for f,ij’s, respectively, as follows:

Va@) : Low f’a05 Lo, f‘a.z0‘
Vi -—l:Oa’ -—I:aﬂ’ f‘ﬁa’ Laq
Vi Eog, Lo Log, Lyo
VS Lo Lups Lpyo Lyo- (36)

As to the terms of order A3ug, we have to deal with two different types of single
component terms, like:

H-A)B-SH(C-S)D-S) (37
and
H-S)A:S)B-S)(C-S). (38)

Both (37) and (38) give rise to a fourth order contribution to the usual g-tensor. We assume
its role as negligible in experimental situations [14].

Howeyer, the terms like (38) give rise to another relevant part of #, . The part
related with O constitutes a higher-order Zeeman like term:

Y oC {0383Z3cp + %373 Vigen) * o® 39

where one of the vectors {4, B, C, D,} is the H-vector.
For Fe3+ ion in cubic symmetry, the higher-order Zeeman terms arising from the
fourth order of perturbation theory have been shown %o be experimentally negligible [15].

7. Symmetry

The part ' = #o+/L+S in Eq. (3) has symmetry given by a point group Goe
Inclusion of the Zeeman term further reduces the point symmetry, as the magnetic field H
is of symmetry Cy,. Then the purely spin part of an effective Hamiltonian 2’ has to
be invariant under operation of all elements of the group G,.

Any perturbation theory-derived Hamiltonian has to possess the same general in-
variance properties as the corresponding one constructed strictly on symmetry arguments.
This invariance is implicitly ensured in the constituents of the Hamiltonian’s tensors.
The results given in Sections 4, 5 and 6 contain only the relevant parts of the appro-
priate expressions.

At first sight, one might be inclined to conclude that every component of B and
B™ is allowed. However, if the symmetry axis is taken to be the axis of quantization for
the states |v[,;], only some of the components can be nonzero in order to maintain the
whole Hamiltonian invariant. '

Below, we write the symmetry-allowed components of spin Hamiltonian tensors,
for certain symmetries. The axes of quantization are chosen as in [9], [13] i.e. for the cases
(a) and (b) — the axis of rotation Cy, for (c) — the trigonal axis, and for (d) —the C, axis.
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a) cubic symmetry:

BY) = V5 B and g (40)
b) tetragonal symmetry:
BgZ); Bg‘)s B(4) and g“s g_]_ (41)
¢) trigonal symmetry:
BE; BGY, BY) and g, g, (42)
d) rhombic symmetry:
BY, BZ); BYY, BY), BY) and gy, g5, g 43)

From Wigner-Eckart theorem, we have [5] that the B,(lz) are relevant for spin S>1,
B("') for §>2, and the ordinary Zeeman terms for S >1/2. Explicite formulas for the
relevant components listed above are given in Appendix B.

"The above derived expressions together with the results of Appendix B form
a compact set of equations from which one ran directly “read out” any desired contri-
bution to spin Hamiltonian for any symmetry.

It is worthwhile to determine the relations between our B(z) B(4) and the conven-
tional parameters D, E, a, F. We refer 1o the formulation of [16] and [17]

A k-th order part of spin Hamiltonian, by the definition of a scalar product, is
explicitly:

B® . 0 = zq(-1)""le,">o<f;. (44)

On comparing the corresponding expressions (ours from Eq. (44) and that of [16], [17]),
we find correspondingly for the symmetries (a) to (d). Below, a brief notation is used
By = B, = B,
2) 2_spw 45
¢ = 2B (4%)

b) On making use of the relation (4-128) in [8], we find:
a __ &
‘= 1./70 BYY (46)

F

5 = F B - 1 JTOBY). @7

¢) To avoid an introducing two different coordination systems, i.e. a cubic one

{¢&, 1, {} and a trigonal one {x, y. z} as e.g. in [17], we simply leave the parameters BSY,

(4) . In other words, we work in a coordinate system where the z-axis is the trigonal axis,
as deﬁned for Eq. (42).
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d) In the cases (a)-(d), we have:

D=-3Bp. (48)
The rhombic second order term:
E= - V3B (49)

For the BS", B, Eqs (46) and (47) hold, whereas B} constitutes a fourth ordér rhombic
term not used in conventional spin Hamiltonians. .

8. Conclusions

We have proposed, in this paper, the direct adoption of tensor algebra in perturbation
theory. The method rests on recoupling of invariant products arising in the earliest steps
of perturbation theory calculations.

A word should be said about the approach of Grant and Strandberg [2] to spin
Hamiltonian. These authors constructed spin Hamiltonian by tensor decomposition

as a sum of symmetry-allowed invariant terms of variables S and H. Thus, the main idea
of [2] is identical with that of Koster and Statz [1]who achieved the same goal by formal
group theory. These results of [1] and [2] are equivalent [18]. However, neither of the
“constructional” approaches can provide any information about the strenghth of the
parameters involved, in contradistinction to the perturbation approach.

The adopting of tensor algebra in the manner proposed above permits the obtainment
of compact expressions for tensor of spin Hamiltonian applicable to any particular
symmetry. The relevant expressions are derived up to the fourth order of perturbation
theory. The final form of spin Hamiltonian is expressed directly in the convenient opera-
tors OW,

" The utility of the genérél spin Hamiltonian expressions will be proven in a forthcom-
ing publication [14].

The general method proposed by us permits moreover the deriving of perturbation
theory relations for the parameters of higher order Zeeman terms, as outlined above.

The author wishes to express his deep indebtedness to Docent Dr L. Kowalewski
for profitable discussions and for critically reading the manuscript, and to Dr T. Lulek
for helpful comments. The author is also strongly indebted to Professor A. P. Jucys for
his helpful letters on tensor methods. '

APPENDIX A

1. Let us define some neccessary tensors, used in the stepwise procedure (see text).
From Eq. (4) we find, -

(A(l) . Sv(l)) (B(l) : §(’1)) — i (T(l) .”‘U(l)') (A’l)"
1=0 ‘
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3
(A(l) . S(l)) (T(Z) . U(Z)) — Z (X(l) ) Y(l)) (A2)

I=1

) 4

(1), (1) 3). OGN — O . HW
(A7) (XY I_ZZ(V ") (A3)
where the tensors on the right‘are defined as:

TO = [AD x BD]®;  TO = [§D x §D]® (A4)
XO = [ADx TN, §O =[SO 5 y@]® (AS)
YO = [ADx XP]O; QO = [§D x OO, (A6)

We also define a tensor Z® as:
Z(l) = [A(l) X X(Z)](l). R (A7)

2. The operators U®, Y®, 0O are at the same time spherical tensor operators of
the variables (So, ;) [12]. Writing down explicitly their components [19] and making
use of commutation relations [12], we can transform them to other angular momentum
tensor operators, found in the literature. We have chosen, among all the others, those
tabulated in [6], i.e. OP(j,, j,) because Tables of their matrix elements are available, as
well (e.g. [7])-

Now, the O%’s transform under conjugatlon operation as follows:

0Py = (—1)70%,. (A8)

‘In order to maintain the same phase factor as in [12] and [9], we introduce new operators,
defined as:

0P = i*oP. (A9)
The 0%’s have the desired property:
(0P = (-1)f710%,. (A10)

We have established the following relations and numerical coefficients:

SO = om (A11)

0@ = \73 $-9= \/— S(S+1) (A12)
oW = — \/ii(éx $=- 7 L g (A13)
U = 36 = o (AL4)

O = 9,60 (A15)



562

0¥ = 5,00 (A16)

and

o, = 3VIESES+D-1} 9, = V& 2SS+ +1}
ay = —1i; Y3 = "i\/-g_‘
oy =%} ‘ e =22 (A17)
3. The following vectorial identity holds
ABxC)+ C(AxB)=BAxC)— B-(Ax0)1.

APPENDIX B

1. The relevant components of a second rank tensor T are

1
T = 7 {24§"BP + A% BV + AVBY)} (B1)
v
TS = A4BY. (B2)

For brevity we define the following symbol
1) = /6 TY. (B3) -

Henceforth we shall be omitting the index of rank in standard basis components [12]
of the vectors.
2. Relevant components of a fourth rank tensor V%) “Bcp are

= {(t(z)) (t(z))+(t(2)) (t%ZC))_I_(t(Z)) (t(2)

«/

—(44B_,+4_,B))CD_;—(A,C_1+A4_,C)B_,D;—

—(A1D—1+A—1D1)B1C_—1 —84,B,CoDo} (B4)
Ve = \/28 {ALBs (G +(EDCL Dy +
+2(A 41+ Ao) (BoCoD s 1 +BoC 41 Do)} (BS)

V) = 4{4B+,C4 1Dy, +A+1BoCsDy1+As1B11CoDyy+
+A4:1B+:C11Do} (B6)

VEd = A41B+1CsiDyy (B7)
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3. Relevant components of a second rank tensor X, (2};0 are

X® = —3{(A-;B;—AB_;)Co+Bo(4-,C; —4,C_,)} (B8)

X9 =7 —{(A0B+1_A:tlBO)Ci-l+B:l:1(A0Cj:1_AiICO)} - (BY)
\/
The above expressions were obtained by a stepwise procedure using the Tables for de-
composition of products D® ® D® found in [19].
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