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The relative change of the reflectivity, caused by an oscillating uniaxial stress, has
been measured for Ge and GaSb crystals in the region of photon energy between 1.9 eV and
2.6 eV. Making use of the piocedure proposed for the theoretical analysis of the results
obtained for Ge [1], the quantitative analysis for GaSb has been performed.

It is shown that the optical transitions observed at 2.0 eV and 2.5 eV can be interpreted
as Az — A, transitions in the A direction (or L; — L, at the L point).

1. Introduction

Investigation of high energy refleciivity spectra provides information about energy
gaps at the critical points but does not provide any information about critical points
symmetry. Experiments which apply an external perturbation breaking the symmetry of
the crystal allow us to obtain information about the location of a given transition in the
Brillouin zone. The uniaxial stress may be used as such a perturbation. In our case an ac
uniaxial stress has been applied and a differential method of measurement has been adopted.
This allowed us to increase the sensitivity in comparison with the dc method [2, 3, 5, 9,
10, 11]. The theoretical analysis of piezoreflectivity spectra was first performed by Kane
[4] and then used by Sell and Kane [1] to prove the identification of the reflectivity
structure at 2.1 eV and 2.3 €V in Ge as transitions from the A5(L3) valence band split by
spin-orbit interaction to the A4,(L;) conduction band. Our experimental results for Ge,
obtained in the same region of wavelength, are presented on Fig. 1 for comparison. The
measurements of the piezoreflectivity spectra in GaSb as well as their theoretical analysis
are the main purposes of the present paper. We have connected the characteristic shape
of ARIR curves for GaSb with the structure at 2.0 eV and 2.5 eV in the reflectivity R.
This reflectivity structure agrees with the structure in the imaginary part of the dielectric
function calculated by Higginbotham et al. [7] and interpreted as A5 — 4, transitions
(in the double -groups notation A,,+4s, = A%, and Ag, = A%o).
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2. Basic formulas

The relative change of the reflectivity due to an external uniaxial stress is propor-
tional to the strain ein the case of small amplitude of stress (both AR/R and e are second-

-rank tensors):
AR
(}T)ji = Qijueu- ¢))]

For crystals of cubic symmetry the fourth-rank tensor Qi1 has only three various non-
-vanishing components [6]. Using the abbreviated notation for fourth-rank tensor, Eq. (1),
which represents in fact nine equations, thus can be rewritten in the following form:

AR
— ] = 011611 +Q;:(ez;+e33)
11

R
R 44%12-

AR\
Other components of (T) can be obtained by cyclic changes of the subscripts.
ij

Eq. (2) can be rewritten in the symmetry adopted basis [4], [1]:

4R
(T)l = Qe
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where all quantities are now symmetrized functions with the symmetry of the crystal.

There are two mechanisms which are responsible for the change of the dielectric
function with stress. One of them is the energy band shift and the other one is the change
of the wave functions with stress, i. e., the quantities 0:, 03 and Qs describe these two
mechanisms. Each function Q; contains a contribution QM from the energy bands
shift and a contribution Q7" from matrix elements variation. The magnitude of both
contributions to the functions Q; depends on the symmetry of a given transition. The
contributions Q" fulfil the following conditions for nondegenerate bands [1]: for the
transition at the I' point one has Q%™ = QP = 0, at the L point or in the A direction

$ift = 0, in the ¥ direction QP = 0.

It has been found by Sell and Kane [1] that for the transitions considered by them

O™ =0, 0" = 0 and Qs is a linear combination of 0, and Q3. We shall use the

1
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relations for Q;, Qs and Qs which have been given in Ref. [1], to describe the transitions
which we assume to be analogous in GaSb. These relations are as follows:

-, 1 dRy(w)
= — /3D 0 "
= Vst Ry(w) do C))
05 = \/3 DYA[a( P - 80) + B P~ )] )
D3 D3
Qs = —app Ot 0 ©
5 6 Di 1 3 Dg 3
where:
o= 2A/AZ+B2 B = 2B/A2 +B?
A= n(sg)l)__l)_kng) B = k(sgl)_l)_l_negz)

2/ is the spin orbit splitting of the A3 band, Dj are the deformation potential con-
stants where D} and Dj describe the bands shift while D3} and D3 describe the matrix
elements variation. The quantities Ry, &3, £, n and k are the reflectivity, the real and
imaginaiy parts of the dielectric function, the refractive index and extinction coefficient
for unstrained crystal, respectively. :

In the next section we shall try to identify the transitions observed in GaSb as the
transitions in the A direction (or at the L point) making use of the above formulas. In order
to do this we have to show, that Q5 calculated from experiment using (3) does not contain

1 dR
any contribution arising from the band shifts ~ R 70 and that Qs calculated from exper-
)

iment does contain this contribution according to (5) and (6).

3. Experimental data and analysis

The investigated samples were glued upon a ferrite bar in which the magnetostriction
phenomena occurred. Measurements were performed at the resonance point of about
11 kHz. A quartz iodine lamp was used as a light source. An IKS-12 spectrometer was
used to obtain the monochromatized light. The reflected light was detected by Zeiss
M12 F35 and EMI 6255 SA photomultipliers. Phase-sensitive detection was applied to
measure the ac signal proportional to 4R. The modulated signal A7 and the unmodulated
one, I which was not amplified, were automatically recorded at the same time. The
quantity 4R/R was obtained as the ratio of these two signals. The germanium samples
were etched in CP4-A and the GaSb samples — in NHO;+HF solution at 9:1 ratio.
The dimensions of the samples were 2 mm X 15 mm x 150 pm. In the remainder of this
section we will present the expefimental results and quantitative analysis for GaSb.
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Fig. 1. Relative change of reflectivity of Ge versus photon energy for stress p applied in the (110> direction
and for two light polarizations (E parallel and perpendicular to the stress direction)
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Fig. 2. Relative change of the reflectivity of GaSb versus photon energy. Symbols E and p designate the
polarization of light and stress respectively
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The measurements of AR/R were performed for stress in the (110)-and <111} direc-
tions ‘using polarized light. The (112) plane was the reflecting plane. The accuracy of the
orientation of the crystals was to about 5 deg. The experimental AR(w)/R(w) curves are
shown: in Fig. 2.

The strain tensor e;; is related with the stress tensor oy by the formula

€ij = Vijuou ()
where S;;y, is the elasticity tensor. The stress tensor oy is determined by an external uniaxial

- AR
stress p. Using Eqs (2) and (7) one can express the measured value (72—)-' in a given

n
direction n by Q;; and S;;(S;; denotes the simplified fourth-rank tensor Sijiz by using the
same abbreviated notation as in the case of the O;;, tensor).
Vector 7 denotes the direction of the light polarization. Linear combinations of the
S;; and Q; tensor components give the symmetrized S; and Q; functions:

Sl = Sll +2S12
Ss = S11"‘S12
Ss = Saa ®

and analogous relations for Q; are valid.
From Egs (2), (7) and (8) we finally find for our case:

4R

e,
(7{)111 = §(S1Q1 +28505)

AR 111 B p
T - §(S1Q1—S5Q5)

R /170

AR\ p
<— == (8,0, + + 5,05+ 3 5505). )]
R )10 3

The superscripts design direction of stress p and subscripts — direction of light polariza-
tion. From Egs (9) the functions pQ,(®), pQs(w) and pQs(w) were calculated after substi-
tuting into these equations the measured value of 4R(w)/R(w) and the following values
of S; [12]:

Sy = 0.588 x 10-° bar™!

S; = 2.076 x 10~7 bar!
Ss = 2.31 x10-° bar1.

We cannot calculate Q,,05 and Qs since the pressure p has not been measured in our
experiment. The functions pQ;, pQs; and pQs determined from Eqs (9) are presented
in Figs 3, 4 and 5.
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If we were able to show that these experimental curves pQ ;(w) are in good agreement
with the theoretical pQ; calculated from Egs (4), (5) and (6), the A (L) origin of the
reflectivity structure in GaSb would be proved. For this purpose the theoretical curves
described by Egs (4), (5) and (6) must be fitted to the experimental curves by an appro-
priate choice of DY,
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Fig. 3. Experimental pQ, function corrected by subtracting the constant ¢, (plotted as points vs photon

1 dR
— 2 (solid curve) with R, being the reflectivity for
.Ro dow

the unstrained crystal taken from Ref. [8]

energy) and the theoretical function pQ; = 1200

The zero position of the experimental AR(w)/R(w) curves and therefore of pQj(w)
curves can be adulterated in this type of measurement. This zero offset arises from the
relative motion of the optical beam and the sample  whose surface is not homogeneous.

We have shifted all the experimental curves pQ;(w) by amounts independent of the
wavelength to obtain a good agreement with the theory.

We shall describe now the fitting procedure of each theoretical function pQ; to the
experimental one:

a) According to Eq. (4) the function

L dRfe)
Ry(w) do

a; 41
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Fig. 4. Experimental pQ; function corrected by subtracting the ¢; constant (points) and the fitted theoret-
ical function pQs = 600 [a(e{—eD)+ B(e{—&? ), (dashed curve)
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Fig. 5. Fitting of the theoretical function pQs = SOE d—Eo +430 [e(e(V) —e) + PP —e@)]  (solid

line) to the experimental function pQs corrected By subtracting ¢s (points)
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was fitted to experimental pQ,(w) where a; = — \/§D11p and ¢, is a constant which
measures the possible zero offset.
1 dRy(w)

Data of paper [8] were used to obtain —— ——=_ Both curves, experimental
: Ro(w) dw

1 dR,

p0Q; and fitted a, x d—io are seen in Fig. 3. The curve pQ;(w)™ has already been cor-
o aw

rected by subtracting ¢, from the experimental value of pQ,.

b). The function

bs[a(e? — D) + p(e P~ e2)]+es

was fitted to the experimental function p Q5 according to (5): In order to do this the quanti-
ties &5’ and &§ must be decomposed into &> ®. We used the following procedure. The
contribution to the dielectric function arising from the interband transition between one
of the valence band split by spin-orbit interaction A3(L3) and the conduction band A4(Ly)
can be written as follows:

1 A,

(2) _
O =5 B () (10)

where E; &£ 2.5eV; E_=20eV. . } ‘

We have assumed é? = & in the vicinity of 2.0 eV. The parameters 4_ and I
were calculated from Eq. (10) for two points near 2.0 eV. Using these constants we were
able to calculate £?(w) and £€P(w) = P (w) — P (w). However the function ¢ obtained
in such a manner did not vanish at 2.0 eV. To improve this, the constant A_ was modified
to obtain a good agreement of ¢+ with &f” which was taken from Ref. [8]. The
decomposition which was obtained, is seen in Fig. 6. In order to decompose &, the
functions &{’ were written in the form:"

1
D(0) = — £ ()

where f, (w) are Kramers-Kronig dispersion integrals of the functions 2P (w). Because
I's ~ I'~. we can write:

Fi(@) = of(0=22), 1y

We have assumed that fi(w) = const = ¢’ in the vicinity of 2.0 eV and f_(w) = const
near 2.5 eV. Using the condition e +&® = &f’ and Eq. (11) the constants ¢, ¢/, eP(w)
and ¢"(w) were successively calculated.

exp

The curve pQ3®—c; and fitted curve
by[a(e) — D) +f(eP — )]

are drawn in Fig. 4:
¢) According to (6). pQs(w) is to be a linear combination of pQ, and pQ;.
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Fig. 6. Decomposition of the imaginary part of the dielectric function 832) for the unstrained GaSb crystal

In Fig. 5 pO0%®(w) together with the fitted curve

1 dRy(w)
a —_—
*Ro(@) do

+ba[ae —e) + P~ )]

are presented.

The values of fitting parameters are given under the figures. We see in Figs 3,4 and 5
that agreement between experimental and theoretical curves is good. pQ, is in fact the
simple derivative of the unstrained R(w), hence it is due to band shift: pQ; = pQ™™*™.
The p Q5 function is an excellent proof of the A(L) symmetry of our transitions even without
comparison with the theoretical function. It can be seen that the shape of the experimental
pQj; is quite different from pQ, which is due solely to the energy shift. In the shape of
pQs; one can not observe any minimum at 2.1 eV, characteristic for pQ;.

Hence our pQ; is pure pQT"™ and does not contain the contribution pQ3"* origi-
nating from the band shift. The pQs function is in fact a linear combination of pQ, and
pQs similarly to the case of A(L) symmetry. It can be then concluded that our results con-
firm the identification of the transitions in GaSb at 2.0 €V and 2.5 eV as the interband transi-
tions in the 4 direction (or at the L point).

The authors would like to thank Professor Dr J. Kolodziejczak for the suggestion of
the subject and for valuable remarks. We are also grateful do Dr J. Blinowski for helpful
discussions, Dr Z. Olempska for preparation of the GaSb samples and Mr A. Lempicki
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