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" - The paper deals with"the ambiguity of the"tensor: potential appearing in Kirchhoff’s
theory of elastic wave diffraction. Only the case of a longitudinal®elastic wave emerging
from an isotropic point sourée is considered. It is shown that & certain tensor G can be séparated

from the tensor potential # ‘of Gniadek (4éta Phys. Polon., 31; 443: (1967)) for: this. wave:
In the expression“for. the diffracted, wave the edge integral of the tensor G vanishes, but
its presence .causes the elementary contribution - st ;of the.element ds of the dlﬂ'ractmg
edge to violate the equatlons of motion. After removmg the tensor G from the tensor potential
W the dlﬂ‘racted wave is presented asa superposmon of two longltudmal and three trans-
verse 'waves. Calculations of the wave were carried out ‘by ‘the stationary phase method
for different points of obsérvation. The differénces betweeri the diffracted wave due to the
tensor potential W (Gniadek, Acta Phys. Polon.; 36, 331 (1969)):and that: obtained-in this
work with the use of the tensor potential W’ = W—G& are discussed.

1 A‘_‘Int,ro.duétion

... The application. of Kirchhoff’s theory of diffraction to elastic media has been treated
in “the. -papers by. Petyk.lewwz (1966) and Gniadek (1967)., The. latter gives a form of tensor
potential, essential when using Young’s interpretation of diffraction phenomenon for the
elastic waves.

A closer analysis of this tensor potentlal shows that in the-case of an incident longitudi-
nal wave it contains a certain tensor G in 1mp11c1t form. Each row of this tensor is the
gradient of the approprlate vector potential W, of Rubinowicz taken over the coordinates
of the running ‘point ‘0 on the diffracting edge B. The presence of the tensor G in implicit
form complicates the explanation of the action of the elementary laws at the formation
of a diffracted wave. It is known that in the scalar case the contribution coming from an
element of arc of the dxﬁ'l:aetmg edge does not generally have to. represent an elementary
law. The integrand appearing in the formula for the’ dlﬁ‘racted wave — hence, the elemen-
tary law also — is given with an accuracy of up to the gradient of the scalar function
(¢f- Rubinowicz 1969). This aspect of the;theory has been analyzed in the elastic case.
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In particular, the problem of choosing the initial formula for calculating the wave by
the stationary phase method was considered. As a result of the analysis performed, the
tensor G mentioned above was removed from the potential given by Gniadek (1967)
in the case when the longitudinal wave emerges from an isotropic point source (cf. also
Gniadek 1969). By means of the tensor potential modified in this way the diffracted wave
was obtained.

It proved that the integrand in the formula for the diffracted wave represents several
kinds of elementary spherical waves. After this finding, the diffracted wave was established
to be the sum of two longitudinal waves and three transverse waves, concordant in phase,
but of different polarization.

When calculating the diffracted wave by the stationary phase method some computa-
tions of Gniadek (1969) were repeated. An analysis was made of the differences which
occur between the diffracted wave given by the integral 55 Wids = ug and that given by

the integral u‘® 55 (W— G)ds obtained in this work. It is found that in first approxi-

mation the calculatlons of the diffracted wave by the two formulae in mention give the same
result. The difference between them'is brought down.to the terms containing the wave
number in powers lower than the leading term. This is true for the whole range of ob-
‘servation. Both of th,esé formulae show (in agreement with the required conservation of
wave motion continuity) an identical jump of amplitude, equal in value to the amplitude
of the incident wave at the shadow boundary. The mentioned differences only concern
the longitudinal part in the diffracted wave. The results pertlnent to the transverse parts
are identical in the entire range of -observation.

2. Modified form of the tensor potential for the longitudinal wave and the diffracted wave
relevant to it

If in the Kirchhoff-Huygens principle we replace the scalar fields in a formal way
by certain vector fields #(Q), and substitute the normal differentiation operator n by the
stress operator

- 0 , .
To = 21 n +An div+ u(n x curl)
n

and the function f = ¢*"/r by the tensor I" of Kupradze (1950), we get the Huygens principle
for elastic waves in the Kupradze formulation (1950, 1963):

1 ~ . » 2 .
up) = - f [F(P, 9Tou(Q) - Tl (P, Q).

The notation used is as follows. A and p are Lamé constants, n is the normal going out
of the surface F enclosing the region R, and r is the distance of the point P (inside region R)
from the point of integration @ on surface F. The function u(Q) defines the state of the
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field at point Q and is a regular solution of the equation of motion for an elastic medium,

LZV div u— —170ur1 curlu = —u 2.1
ki k3
k, = w/a and k, = w/b are the wave numbers of the longitudinal and transverse elastic
waves, @ and b denoting their respective velocities. The result of the operation Tou(Q)
presents the stress acting on an element of surface df having an outgoing normal n. The
tensor I" (defined below) fulfills the same role as the function e""/r does in the scalar case.
As proved by Petykiewicz (1966), the integrand in Kupradze’s formulation of the Helm-
holtz—Huygens principle can be expressed as the normal component of a certain tensor
field Q(P, Q). This component, being a function of the point of 1ntegratlon QO on_ the
surface F surrounding the observation point P, is sourceless and may be written as the
curl of a tensor potential w.

If the function u(Q) satisfies Sommerfeld’s conditions at infinity and Kirchhoff’s
conditions at the screen, the elastic displacement at point P is given by

- w(P) = [ O(P. Q)ndfo = [ m Curly W(P, Q)dfo,

where fis the area of the aperture in the screen. Curly stands for the curl of the tensor W
(differentiation concerns the point of mtegratlon 0).
Making use of Stokes’ theorem for the integral over f yields (Petykiewicz 1966)

u(P) = fﬁW(P Qyds+ — Z § W (P, Q)ds;.

Jj=1 sj

The line integral over the contour B of the aperture in the screen is the diffracted
wave and in the case of a spherical or plane incident wave represents Young’s explanation
of the diffraction phenomenon. The sum of the integrals over the singular regions of
the potential W on the aperture surface is interpreted as being a geometrical wave (Miya-
moto and Wolf 1962, Rubinowicz 1962).

We consider wave motion in an infinite, loss-less elastic medium. For an isotropic
source of longitudinal waves placed at point L the elastic displacement #(Q, L) at any
point Q of surface F is written in the form

u = Vof(e) 22

where f(o) = €**%/o, o being the distance of the source L from the edge point Q of the
contour B of the aperture in the screen.

. For this form of incident wave the components of the tensor potential W(P, Q)
(Gniadek 1967) are expressed as

Wiy = 21; {sz(l‘”) X )+ 1,67 x w)—f(0) (6 x Vo o)+

0 . v
—4n 6_xi (Wo) +f(0) (6 x Vo z)} . o (23)

)i
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The tensor I’ consists of the sum of two tensors, I'; and I",; the rows of which are present-
able by the following vector fields (Kupradze .1950)

(i) 1o (i)

() 1 il S :
Iy’ = —; curl curl 6*f, (2.3b)
“w?

oD, with i = 1,2, 3 denotes the respectlve versors i, ], k of the coordinate axes, and the
superscrlpt (i) at the same time denotes the i-th row of the given tensor. The functlons
fi= e"‘"/r and f = e"‘"/r with r standing for the dlstance between thé pomt of obsel‘
vation and the running point of thz edge, are the‘spherical-sym‘n%nc solution of ‘th
vibration equation. »
. 1 eik‘.('v,i“"‘) rxo

4n rg rg+ re

1 (2.3¢)

is the known vector potential in the scalar case (Rub1n0w10z 1966). The capital letters
L, P and Q' at the différentiation: operators denote- differentiation over the coordinates
of the given points: L — wave source, Q — point of 1ntegrat10n on contour B of the
aperture f in:the screen, and ‘P — point: of observation. - U

In the scalar case the vector potent1al appearing in Young ] 1nterpretat10n of Kerh-
hoff’s theory of diffraction is defined with an accuracy of up to the gradient of the scalar
function. In the vector case the counterpart of such a gradient is a tensor which has gra-
dients of certain scalar functions as rows. The presence of such a tensor in the form

“(Vgl Wo)xs - (VQ' WO)ya (Vgl W),
|(VQJ WO)x’ (VQJ WO)y, (VQJ WO)z
H(vgk ol (Vo - Wo)ys (Vo Wo| i

G

is ascertamed to be in the tensor potentlal . 3) The quantltles i W, = WOx, ] Wo = W,
and k- W, = Wo, are the respective components of the vector potent1a1 2. 3c) In order
to draw the tensor (2.4) out of the potentlal (2 3) we make use of the followmg conver-
sions:

1, .
4n {69%[f, 1Vof(0)—f(0Vofil} = 5(')'><xcu1'1Q W,.
and
5 F0) = 6 VoW = V10% : W)= 0® x curl, W
XL ,

In the grad and curl operations we-shall replace ;diﬁ'erentiation over the source coordi-
nates L by differentiation with respect to the edge point. Q and point of observation P. In
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doig this we make use of the known formula for the derivative of a composite function
of ‘two variables, remembering that ¢ = LQ is independent of the coordinates xp, yp and
zp of the observation point P, while r = PQ is independent of the coordinates x;, y; and
z;, of the source L. Use is now- made of the conversion expressions

Vo6? Wy = = V(6 W)= Vi (6” - Wo)
and A
09 x curly Wy = — 0% x [curlp W, +curly W]

for’ getting the identity :

d , _
“ an [f 1VQf (9) f(Q)VQf 1] X‘s(l) o Wy = 5(')?( [CuﬂQ W°+ .

x5
+cu11L Wol— VL(d(” Wo) = VQ(5<’> W0)+(¢s<‘> V,,)W0 @ 5)

With the identity (2.5) we shall separate from (2.3) the.explicit form of the tensor G (2 4).
The components of the tensor potentlalzv w’ can now be written in the form

1 ) . . )
W= — {2b2(r$%?x u)+4n(a"> . ‘V,,)YWO‘+ f(g)é(’) X Vg f2+_4nVQ(_J_<'? . Wo)} ] (2.52)

where VQ(J(') Wo)l G, jis the approprlate component of the tensor (2 4) We get the
diffracted wave by 1ntegrat1ng Q. Sa) over the contour Bof the aperture in the screen Ow1ng
to the known theorem of 1ntegral calculus f Gds Vamshes and the removal of the tensor
G from the tensor potentlal Q. 3) or (2.5a) bears no effect on the result of the 1ntegratron

In the descrlptlon of the wave motion as a Whole the forms of the potent1a1 glven by
Q. 3) or Q2. 5a) and the tensor potentral B

W= -G e (é.s)

are quite equivalent. But when formulating, the elementary laws and when applying the
stationary phase’ method, the potential (2.6) is the ‘correct ‘one. In order to justify this
closer, we shall analyze this problem along lines similar to those used in the scalar case.

“In general, instead of a tensor potential W’'(P, Q) we may make use of the potential

W(P, Q) = W'(P, Q)+grady F(P, 0)

for obtaining the diffracted wave, where the vector function F(P, Q) is an arbitrary func-
tion in the general case.

However, if we want to comply strrctly with Young s pornt of view we must require
the contributions from the gradient to fulfill some proper-differential equations. Other-
wise, the contribution W(P Q) dsy coming from the edge element dsQ cannot, be-inters
preted as being wave motion. Apart from thrs the functlon F(P 0) is 1ndeed quite. ar-
bitrary. In the case when we are calculatrng the diffracted wave by integrating over a closed
contour, the shape of the functlon F(P Q) is 1mmater1a1 In practice, we do not observe
the various wavelets, but only ‘the aggregate ‘outcome of their superposition. It is only
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important for the whole to satisfy the equation of motion, which undoubtedly is true
in the case of diffracted waves obtained with (2.3) and (2.6) (see-below, also Appendix 3).

It is a different matter when the diffracted wave is calculated by the stationary phase
method. In this case we integrate around the neighbourhood of the active edge point Q
and the various contributions from the gradients do not have to vanish.

Application of the stationary phase method emphasizes Young’s approach to the
problem. Before employing it, however, it will be convenient to separate the various ele-
mentary waves out. To. this aim, we shall express the integrand in the diffracted wave as
a sum of irrotational and sourceless fields (Eq. (2.8) ef seq.). Of course, when a contribu-
tion from a gradient cannot be presented in the form of at least one of such. fields, and in
addition it does not fulfill the equations of motion, it cannot be cons1dered asa wave —
particularly a ‘Young wave. . . ;

Rubinowicz demonstrated in the scalar case (1969) that the contnbu‘uons from the
gradient are not observed in practice. On the other hand, the purposefulness of calcu-
lating the integral by asymptotic methods may be questioned, as its accurate value is
known; in our explicit case it is equal zero. From (2.6) we have

des_gEWngEGds

It is shown in Appendlx 4 that the elementary contrlbutlon Gds does not fulﬁll the equa-
tion of motion (2.1), but the contribution W'ds does, as follows from the form of the diffrac-
ted wave given below (see also Appendix 3). Consequently, Wds does not fulfill the
equation of motion and cannot be presented as an elementary spherical wave emerging
from the element ds, as is required by Young in his approach. Hence, for interpretatio-
nal reasons and because it is necessary to consider the case when the diffracted wave comes
from an arc of the regular curve ;ﬁi(A # B), we shall use the tensor potential. (2.6) for
finding the diffracted wave. In doing this, we take advantage of the identities proved in
Appendices 1 and 2:

ik1(r+o)

(f'l X u)sy = e "0 [A(so x @0) —B1[(so % @0) * Folro]=

1
) Vel[(Vefi x u) - 5o] 2.7
~ 1
(Fzxwso = — o2 curlp [(u x 50) x Vpfr]=
1 gikietkar)
=5 {A2(s0 % @o)+Baro x [ro X (s % @)1} . (2.72)

5 is the versor tangent to the element ds of the edge, and r, and g, are the versors of the
vectors r and g, respectively. 4; and B; denote the following functions:

4, = ;(ikl— ;)(ile,— -2)  (@7b)
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B, = [3 (ikl'— 1) +k§] (ikl"—l) - ()
ST r r 0 : o
A, = 2 <ik2— }> (ik1 - {) (2.7¢)

r r 0 .
3 1 : 1\ - o
b= 2 1) ] (- ). e

With the aid of these identities we put the diffracted wave in the form:

1
u® =V, @ (so - Wolds— —— Vp® [5o - (Vpf1 X u)]ds—
2nk;
B . B.
- Cul‘lP SOf2f(Q)dS+ _—2‘ CurlP [(u X SO) X VPf2__IdS‘ (2.8)
47[ 27Tk2 R
B B .

It is shown in Appendix 3 that each of the integrals in (2.8) individually fulfills the equa-
tion of motion. Hence, as had already been mentioned, formula (2.8) represents the fol-
lowing set of diffracted waves.

The first two integrals give the longitudinal waves,

2nk?

B B

1 ‘eikl(r+g)
ug)n)g = fﬁVP(So “Wo)ds — —‘§ T {A(so X @0) — B[ (80 X @0) * Fo]ro]ds —

—By[(s0 x @0) * Folro}ds (2.9)

determined by the phase factor ¢®*'**+9, The elementary wave in (2.9) is the superposi-
tion of a ' wave, which is continuous in the entire region of observation, and a wave con-
taining the potential- W,. The presence of the function W, indicates there is a jump of
the wave (2.9) at the shadow boundary. The shadow boundary is defined as the lateral
surface of the truncated cone generated by the rays LQ belonging to the pencil of straight
lines emerging from L and passing through the diffracting edge.

The third integral in (2.8) represents the simple case of a transverse wave,

) 1 i(kar+ki0) 1 1
u = — — 3€ AN (ikz— -) (ro X So)ds. (2.92)
, . ,

4n ro r
B

The elementary displacement in (2.9a) at point P is always perpendicular to the edge
element ds, wherein the maximum amplitude is at the points of observation at which
r L s,. This kind of wave is independent of the direction of incidence of the wave from
the source L. o
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We can write the last of the integrals as a sum of two integrals, each of which fulfills
the  equation of motion. We present it as the superposition of two transverse waves:

1 t(k2r+k19)
D .
“ﬁrz) =l P N [Az(so X Qo)+Bz"o X [¥o % (50 X 00)]]ds. (2.9b)
2nk> ro
B
Let us notice here that the appearance of three transverse waves and two longitud-
inal waves in the diffraction process is evidence that the diffraction process is more complex
than the processes taking place in reflection, also as regards the number of constituents

which appear.

3. Calculation of the diffracted wave by the stationary phase method

We shall apply the stationary phase method to the diffracted wave presented in the
form resulting from a combination of formulae (2.9), (2.9a) and (2.9b), viz.,

1 elrte (rxg): s 1 eikx(r'+‘e)"
P = - — @V % ds— Ay(50 % @0)—
“ an] P re ro+re 2nk§ I {As(s0 % 20)

P S

l(k19+kzr) R 1 .
—By[(s0 % @) * "o]}dS— e § (ikz.— ;) (o X s0)ds +

1

i(kar+kiQ)
§T {Az(so X o)+ By o ><'[(Qo“><.r"'o),><Z ’01}d§~ e (D
The presence of the potential W, requires the region of observation in which calculations
are to be performed to be established prior-to using the stationary phase method. This is
necessary because the singularities which appear when the direction of observation is
a prolongation of the direction:of ‘wave incidence on the element ds have to be removed
from the potential W,. This allows the region of observation: near the shadow-boundary
to be defined as the set of points P-at which r, can be replaced. by — g4 without making
a big error. In the regions of observation where this: cannot be done owing to excessive
error, the influence of the singularities .(the Fresnel integrals) on the value of the ampli-
tude is inappreciable. In-this case the-stationary phase method may be applied directly
to formula (3.1). These differences in procedure only concern:the first integral in='(2.8)
or (3.1), as the remaining terms are continuous on the shadow boundary. If the observa-
tion point is placed far from the shadow- boundary, formula (3.1)- may be substituted by
the asymptotic approx1mat10n used for large wave numbers. We disregard the terms con-
taining the coefficients 4,, Eq. (2.7b), and AZ, Eq. (2.7¢), because they are smaller by the
order of k than the other ones.,
Let .us also. note that in ﬁrst approxnnatlon

F Valso - Wods & —ikey § rodu® | 62
B B ot
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where
g gki(r+o) (,‘,x,e)l-. So -

s . (3.22)

du® = —
\ 4nrg r9+rg
is the elementary diffracted wave in the scalar case. Moreover from (2 7b’) and (2. 7c)

we have o
tkr(r+e)

B w ik ¢ (3.3a)
ro
and
) ‘ t(kre+kzr) :
By~ ik (3.3b)
o

~ - Bearing all this in mind, we finally get from formula (3.1) the following form for the
diffracted -wave:

» AR k ‘_eiki;.
u? ~ —iky @ rodu™ + ! fz — [(ro X @0)* $o]¥o —
27K ro
3 “ :
lk2 v k28 o [ s
- T(sox s + ——3§ (rox[rox(oxeollds  (34)

in which

{=r+p; 9=;g+r

and x = & denotes the ratio of longitudinal wave velocity to the transverse wave velocity.
. ,

Formula (3.4) presents the approximate field of the diffracted wave, generated by the
wave in the form (2.2). Owing to the way in which it was derived, we shall temporarily
limit further considerations to observation points placed far away from the shadow
boundary. As is shown later, once the stationary phase method is applied to (3.4) these
limitations are found to be quite unnecessary.

Formula (3.4) is simple and easy to interpret, and we shall use it: 1° to discuss further
the influence of the ambiguity of the tensor potential (2.3) (see Sec. 1) on the shape of the
asymptotic expression for the sought diffraction field, and 2° to simplify calculations of
the diffracted wave at observation points distant from the shadow boundary.

All this calls for a closer analysis of the approximation of (3.2) leading to formula
(3.4). It must be emphasized that we are restricting the use of these approximate formulae
to such diffraction fields for which the stationary phase method may be applied and,
consequently, the asymptotic approximation for large wave numbers.

After executing the operations V,,st we get terms having singularities in the form
of the factor

1 1

- or ——.
ro+re (ro+ ro)’
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These singularities are encountered wherever the denominator (ro+rg) tends to zero.:
In our case this is near the shadow boundary. Their effect on the value of the field in this
region might be considerable even though they could be disregarded owing to the order
of the wave number which appears. The approximation of (3.2) consists in rejecting all

terms which contain the singularitiés None the less, after applying to these

1
(ro+re)*
terms an appropriate procedure (Petykiewicz 1963) and then the stationary phase method
it can be shown that their influence on the diffraction field tends to zero when the point of
observations approaches the shadow boundary (see Eq. (3.8) below). This lets us compare
in Subsection a) of this section the results of calculations of (3.4) near the shadow boundary
with the diffracted wave calculated from formula (3.1) for the same region of observa-
tion.

Let us now consider points.of observation placed far away from the shadow boundary.
In this region the effect of singularities associated with the term V,Ws, does not become
manifest and it does not matter whether we apply the stationary phase method to (3.1)
and then make the approximation for large wave numbers or,-as' we do here, apply the
stationary phase method directly on formula (3.4).

For the sake of comparison with.(3.4) and subsequent formulae, ‘we give here the
formula of Gniadek (1969) for the diffracted wave when the incident wave is described

by (2.2a), viz.,

1 N
U = In § {sz(r1 x Vpf(0))so +f(g)(s0 x YQf1)_f1(so X VQf(Q)_
B

— 4V (W, - so)}ds+ o iﬁ [2b%(I"; x Vo ()50 — f(0) (50 X Vo f2)]ds.. (3.6)

In order to approxnmate (3.6) for the case of large wave numbers we make use of
Eqs (3.3a) and (3.3b) together with the following approximation :
MO (1x ) - 5,

47[VL(W0 * So) ~ ikl : - Qo
ro ro+re

and get the counterpart of _fqrmﬁlé (3.4),

5 lk1 eik1§ lkt§ .
U ~ iky é; 2odu® + § 'E [(rox o) - So]"ods"‘ — § — (Qo
B

2nx?
B
lk2 zsz .
—ro) X Sods— — (s0 X Fo)ds+
47
B '
ik, [ e*** , .
E—E {ro x [ro x (s X go)]}ds. (3.62)
nK J ro B

wB -
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- To find the difference between the formula for the diffracted wave coming from the
tensor potential in the form (2.3) and that in the form (2.6), we have to subtract (3.4)
from (3.6a), which yields '

lk = ei"“t , S
u®P —ugp ~ —ik, 9€(yo+ 00)du'® — T;ff; ﬁ (80 —70) X Sods. (3.6b)
J ;

B

We shall show that when (3.6a) and (3.4) are computed by the stationary phase method
this difference is reduced to zero. For this, we resort to the known representation of the
vector field,

V(P, Q) = ‘Tn(fvaf(@)_f(Q)VQfl)=

LSRN SR AN 1
= e4 |:<ik1 ——) 0™ (lkl— _) "O:l
Tro 0 r

as the curl of the vector potential Wo(P, Q) (Rubinowicz 1966):

V(P, Q) = curly, W,
as is the case in formula (2.3c). It is easily seen that the integrand of the second integral in
(3.6b) is the first approximation of.the vector field

T iki(r+e)

VP, Q) ~ ik,

47"'9 (o—ro)-

We substitute it by the first approximation of the function éurlféWd,

cutlg Wo = —ikig[(rxe)x(ro+eo)]

where

The difference (3.6b) then becomes ;

u(D)——u(B) N — iklgg g(r X Q) [(Vo+ eo) N So]ds. (3.60)

When we apply the stationary phase method we take account only of the contribu-
tions coming from the points ‘Q; of curve B at which the function { = r+p takes on an
extreme value, i. e.

dr+dg_0
ds ds

and this causes the integrand in (3.60) to Vaiish.

2
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_Let: us: now notice that (3.6c) also represents the first approximation  of 95' Gds
(wz Appendix 4).

This means that applying the stationary phase method to (3.1) and (3.6) we obtain
two asymptotical expansions whose ﬁrst terms are identical. The difference appears only
in the subsequent. terms havmg k1 . : ‘

‘We shall now 100k at the behaviour of the wave prlmanly in two reglons of observa-
tion, namely, near and far from the shadow boundary.

a) The diffracted wave near the shadow .boundary:

A method for removing singularities in the vicinity of the shadow boundary in the
case of vector fields was glven by Petykxewxcz (1965) We proceed quite analogously in the
case of the integral

‘If VP(sQiWO_)ds'

i

Accomplishing the “grad,,“‘ operafion we have

; 1
Va(so - Wo) = &(so % @0) — So(r X @0) I:g (ik1 - ;) Fo—

ro(r+0) +R] » a7

re+r- g

where R = g¢—r = LP. Since we are in the observation region where it may be assumed
that ro = —@o = — Ry, hence,

§ V(so  Wolds = — § {g(so X #o)+5o(r X @) [; g0o—ikgeo+
B
r+0)—R
g ""(—Hﬁ)—]} ds. (3.72)
rot+r-g@

For the integral in (3.7a) we use the same procedure as the mentioned author did, and
get the following integral calculated by the stationary phase method:

\/(—V-I-Q)——R ei(hR:I: :I‘)
2ro(ro+re) 77

4n 43‘ V(o - Wo)ds ~ {(" X@) " 8o |:le0 +

B J

2 +R,

' : 1
lm] F(v)—[(rxe) " so] [(r+Q—R);go+go—R0:|}, (3.8)
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Here,

F(v) = [
+too
To the other terms of (3 1) we shall dlrectly apply the statlonary phase method (see Rubl-

nowicz 1966)
In the case of a regular term describing a longitudinal wave, the integral appearmg
in the expression giving the contribution from a single critical point Q; has the form

s+4s;

J Pl 3 (58D g A \/ 2” e(klc, 4)

kylC51

s—A4sj: [PV

where 4s; = s—s;, with 5; being the coordinate of the point Q;at which the phase function
{ = r+o reaches maximum' ‘or ‘minimum value. -

In the case of the transverse waves (2.92) and' (2.9b) we likewise have for the point Q,
the integral

s+4s;

eikz[s;ﬂ-s,"(s—s,)z]ds ~ \/ 7 (kz&:i 4)
k,19/|

s—ds;

where s, is the coordinate of the point @, at which the phase function acquires an extreme
value. ' '

Before proceeding to the formula for the diffracted wave near the shadow boundary
we must make the following comments. :

In the case of.the longitudinal part of (2.9) of the diffracted wave, we shall restrict
ourselves to the contribution from the critical point Q ; for which hold the relations:

C(ryjxg) 5o =0 and R,=gy= —ro..

Application of the stationary phase method to the second integral in (2.9) demon-
strates that the estimated contribution at the shadow boundary coming from the continuous
longitudinal wave is at most of the order of k™% On the other hand, the contribution
from the integral (3.8),

Noro-r ¢ “.%‘)<

1, |
27‘9(7‘@ +r- Q) \/léu E) (V x e) ) sOF(U) (3.9)

is of the order of k. Hence, at the shadow boundary the decisive terms is that containing
the function W,, which among other things shows the correctness of the choice of the
potential (2.6).
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In the immediate neighbourhood of the shadow boundary the second term in (3.8)
may be neglected as

(r+900—R)—=0 and gy—R;,— 0;

ki1
also, | F(v)dky also tends to zero when k — +co.
+00
We shall also make use of some other, known identities valid at the shadow boundary,

viz.,
L e
Ve JRsin? (ods)

ro . .
————sin (pds) sin 4(r, o) cos
\/r+Q+R (ods) sin 3(r, o) cos «

(rxe) sV(r+0)—R _ 2
(re+r-gro ro

with cos « = +1 in the light cone, and cos « = —1 in the geometrical shadow region.
With all this taken into account, the approximate formula for the diffracted wave
near the shadow boundary has the form

) ﬂ—(rw-R)
1 el(klRi ‘7{) i—v2
u?| ~|ikj— —)—=——cosa e’ dvRy+ Y u,l (3.10)
sh.bound. ™~ 1 R \/i R 0 - trll .
+ o0
where
- i(kzs,:r;‘:) )
e .
u,l, ~ \/ 2” N (ro X s0)+ — #o X [ro X (89 X 00)] 7| - (3.10a)
8n|3)| ro K 1

In formula (3.10) the sum runs over the contributions from the critical points Q, on the
edge for which the function of arc & accepts an extreme value. The form of (3.10) shows
that the longitudinal diffracted wave.undergoes a jump of

1 eiklR
ik, — — R
(l 1 R) R o

at the shadow boundary, which compensates the jump of the incident wave. From the
extremum condition & = 0 it follows that the elementary transverse waves diverge in
first approximation over the same half-cone with its apex at point Q;. The longitudinal
wave emerging from the element ds containing the same active point Q, propagates over
the surface of a cone having a smaller angle than the cone for the transverse waves emerg-
ing from the same element ds. This kind of conclusion was arrived at earlier by Gniadek
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(1969) on the basis of the tensor potential in the form (2.3). The directions , of the ele-
mentary transverse waves leaving point Q; form a circular cone which comprises the cone
of the longitudinal wave coming from Q, (Fig. 1). The direction of the incident wave 0
and the direction r, cannot be parallel except in the case of the half-plane when the source
L and the observation P both lie on a plane perpendicular to the edge of the half-plane.

-
——
—_

Q/- shadow bozvgary_ s

Fig. 1. Formation of the elementary diffracted wave; ®; — conical surfaces of the elementary longitudinal
wave, @, — conical surface of the elementary transverse wave, Q;, O ; — critical points, L — source of
longitudinal wave, P — observation point

Then, the points Q; and Q, overlap and both cones degenerate into a half-plane. Both
transverse waves now have the same polarization, perpendicular to the diffracting edge,
and formula (3.10) reduces considerably to

l/% (rt+¢—R)

» . 1 ei(kaiz) i,
ujiz, ~ | ik, cos o ez dvR,+

R} 2R
+ o0
Ky (9% F) et
i . 3.10b
+ \/8n|9”] ro K (ro SO)}J.=, ( )

We may now give the result of calculating (3.4) by the stationary phase method in the
immediate vicinity of the shadow boundary. The first integral is reduced in essence to the
scalar diffracted wave (Rubinowicz 1966, Sec. V) multiplied by r,. The second integral in
(3.4) vanishes because r||g,. Calculation of the integrals representing the transverse waves
gives the same results as the corresponding terms in (3.10).

Hence, we immediately get the diffracted wave calculated from (3.4),

e
u Cos OfF(U)R0|J+ Z utrll (3.10C)
1

J2R

as a special approximation of (3.10), in which #,], is given by (3.10a).

(D) i
u|sh, bound ~ lkl
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b) The diffracted wave at observation points far from-the shadow bound-
ary SR

- For this'; reglon of observatxon we apply’ the statlonary phase method dlrectly to for-
mula(3.4). The contribution to' the’ dxﬁ"racted Wave from the critical pomts Q, and Q,
is ‘found‘to be' given by '

K, e(kot ) 1 2
(D) ~ i 1 - N
ul},l l \/Snlcni ro ( +COS (r @) > [(rOXeO) so]"o';
' X, ei(kzs:t %) 2
Fi | - . ;
l\/Sni{)”l ro {("ox‘so‘)“' K"ox["ox(soxeo)]}ll (3.11)

We consider the case of a half-plane. If s, defines the direction of the edge of the
half-plane, then (3.11) represents the total diffracted wave received by the observer: from
the point Q; a longitudinal wave and from the point 0; a transverse wave. The distance
between the points Q; and Q,, and the angle between the directions incidence of the waves,
are easily calculated functions of x. The case when the points P and L lie in a plane perpen-
dicular to the-edge is interesting. Then, because

(ro % @0) |18o and ro % [1o X 5o % @0)] = (ro X So) cos (r, 0)

\/ (klei: 4) i 1 . 2
@
uim ¥ 8nil"|  re (1 +cos (r, Q) 2) sin (r, 9o +

\«/ ‘kz e(mi D,
+ A

9 e ® (cos B+cos (7, 0)) (S0 % Fo)... (3.11a)

we have |

where B = arc cos k/2.

It is seen from Eq. (3.11a) that at a fixed g, the amplitude of the transverse wave
takes on values nearly equal to zero for certain directions of observation (8 = <X (r, @) £ 7).
Hence, there is such a direction of observation for which the diffracted wave is in practice
observed only as a longitudinal wave.

4. Conclusion

With the tendency of s1mphfy1ng and improving the legibility of formulae for the
diffracted wave use was made in this work of the exact Young approach to the formation
of the diffracted wave. From the experimental point of view formulae (2.8) and (3.6) are
equivalent. Notwithstanding, formula (2.8) and the respective subsequent forms of the
diffracted wave are the outcome of the Heuristic role of Young’s idea in the search for
simple descriptions of physical phenomena. Along these same lines, it is possible to obtain
simplifications and facilities in the interpretation of the formula for the diffracted wave
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already known in the literature in the case when theincident elastic wave. is’'a.transverse
spherical wave (Gnladek 1969) Th1s problem w111 be dealt w1th separately ina forthco-

ming paper. . : :
The authors expresses h1s appremaaon to Professor A. Rubinowicz for readmg thev
manuscript and to*Dr J. ' Petykiewicz and Dr K. 'Gniadek for 111um1nat1ng dlscussmns

during the writing of this paper.
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APPENDIX 1

Calculation of (ﬁ’l‘x-u) So-

First, let us note that the vectors # and s, are independent of the coordinates of the
observation point P. Using the form (2. 3a) and the identity

V div (5(”1”1) = (5(') V)Vf,
we make the transformation
(F 1 x "); = a? [(6© - Ve)Vefi x u];.
By virtue of the 1dent1ty . .
' e VY(@xb)y = ax(c:Vyb—bx(c V)a
we put the tensor fl x uin the form of a tensor whose rows fori = 1,2, 3 arﬂe‘tﬁeuresi)ectivo
components of the vectors — "——;(6(') V) (Vpfi x w). Thence,
)
(I'yxwsy = — e Velso - (Vafi x w)]. (AL.1)
Next, we transform the gradient iﬁ kthe following way:
. o
Velso - (Vefi xw)] = =Vp[Vpf; * (soxu)] = Vp I:; ar Si(sox u) - "] =
10 : 10
= = = —filsoxw)+[r- (soxu)]Vp <- 7f1>~ (A1.2)
r or r or
With ‘use of ‘the identity
” , 8. 28, @&
—kify = divVfy =diveo —f == —fi+ Ll
A or r or or

we have

VP.(E,."ifl) = l(é '(zf +k1f1) Fo.
Y r\r
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Formula (Al.2) now takes the form

10 30
Velso - (Vofi xw)] = — - 5f1(soxu)+ <; (%fl"‘kfﬁ) [(so x ) - ro]rg.

Whence, after substituting # = V, f(0) and performing the rewritten differentiation opera-
tions, we get

A 1 )
(I'y x w)sg = C(7f1f(9) [A1(so x 00)— B1[(s0 X €0) * ¥o]ro] (A1.3)

where A, and B, are coefficients given by Eqgs (2.7b) and (2.7b'). »
Formulae (Al.1) and (A1.3) are the forms of the vector (I', x w)s, appearing in
Eq. (2.7).

APPENDIX 2

Calculation of (f"z X u)Sg

Proceeding similarly as in Appendix 1 we get by virtue of (2.3b) the expression
X 1 .
(I'y % wso = P {Vbls0 - (Vofa x W]+ k3 f5(u % 50)}. (A2.1)

Making use of the fact that f, satisfies the equation of vibrations, we get the following
transformation:

1
fo(uxsg) = — P (uxsy) divpVpf, =
2
1
= - 12 {curlp [(x s0) X Vpfo] +[(ux so) - Vp]Vefs}. (A2.2)
2

After placing (A2.2) into (A2.1) and considering that

) 1
[(wxso) Vo] = — o2 curlp [(ux 50) X Vpf,]
we get the first identity (2.7a),
N 1
(Fz X u)sO = - —"3 Curlp [(Il X SO) X Vsz]. (A2.3)
w

We get the second identity (2.7a) from (A2.3) in the following manner. After applying
the formula for the double vector product, performing the curl operation and the follow-

ing gradient operations,
10
Ve(Vefo u) = =V, [(‘ _fz) L ":I =
r or

7] . o2
= —, —6_rf2+‘(r0 Cwr, 'a?fz
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and
_ 0
Ve(Vefy " 80) = — o E.fz
where

1
0, = = [0~ wyro—1]

1
g = ;[("o " $o)Fo—So]

we get the converted form of (A2.3)
R 1 0 0*
Iy xwso = — e Efg(so X @) +(so X ro) (ro * 8) é?fz'*‘

2

0 0
+(u X o) g;fz—("x r) (ro - 5o) 8_r2f2=

l =

0
= — (2so x )+ [u(so " ro)=(ro * Wso] x ro} = o+

S

62
+ b?fz[so("o “u)—u(ro " So)] X ro. (A2.4)

We express the member in the square brackets of the last equality (A2.4) as a triple
vector product, consider the identity
o* 20
5;2‘f2 = - ; afz—kgfz

and get

r

. 1 (20 30 i
(I'yx w)so = pe {; E‘fz(so>< u)+ ( E,fz'*‘k%fz) [ro x (ux 50)] Xf'o}- (A25)

After substituting # = v, f{(e) and performing the operation of differentiation with respect
to r and g, (A2.5) becomes after arranging the various terms the second identity (2.7a).

APPENDIX 3
Proof that the elementary wave given by formula (2.8) fulfills the equation of motion (2.1)

a) We shall show that the various members of the longitudinal wave fulfill the
equation of motion.

In the case of the member yp(s, * Wy) the proof is instantaneous, once it is noticed
that W, - s, is an elementary diffracted wave in the scalar case. This wave satisfies the
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Helmholtz equation of vibrations, whence
Ve divp V(Wo - 50) = —Vpki(W, - So)-

In the case of the other member of the longitudinal wave we find on the basis of the
identity :

Valso(Vafs x u)]i‘:mcurlp [(so x u) X VPfl] —kif(s0 x u)
the result ' o
Ve divp Vp[so(Vefi x )] = — k%VP[VPf 1 (sox w)].

Hence, the member Vp [so * (Vpfi X w)] fulfills the equation of motion.
b) To prove that both transverse waves fulfill the equation of motlon it suffices to
show that both members .of the transverse wave satisfy the equation”

e curlp curl, w = k3w
where w is a sourceless vector.

In the case of the first transverse wave the integrand is converted into the form
— 50 X Vp f2f(0). After using the formula for the curl of a vector product we get

curlp curl, curlp (f(0)f250) = —f(0) curlp [so divp Vofo+

+(So VP)VPf AR k2 2 (Q) curl Sofz

which proves the thesis. o
In the case of the last integral in (2.8) the proof is- analogous

" APPENDIX 4
Proof that the vector Gsy = G does not fulfill the equation of motion (2.1)

The vector G does not contain the parameter k,, but only the parameter k,. Hence,
the condition which has to be satisfied by G for Eq. (2.1) to be complied with is the dlsap-
pearance of the double curl of G.

We show that:

a) . divpG =0

L) ~curlpeurl, G# 0.

The product of the tensor G (3 4) .times the ‘'vector s, can be presented as
A ) : 0 0 0
GSO =G = (So E VQ)WO = ‘l Sxa—J‘CQ Wx+syég Wx'l“sza—z; Wx +
ils Zwas, Lwas Low |+
Sy — s, — S, —
7 Toxg T Ay o 8zg YL

+k‘[s,,— W, +s, — W,+s, — Wz] (A4.1)
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Performing the divergence operation on-(A4.1) yields

divy 6 o s % wi aW+ 2yl
d1vp ( =2 Semz T WaTSy o Sz = Wx |7
Vp USo = (%CP A 0xQ y.ayQ % ‘.3ZQ',__' e

+ 0
—_— S —
< 0yp _"x' x

o o : -
+ — sx'_,~VVz+”‘ e el et e B IS
Ozpl " 0%

By altering the succession of differentiation and grouping the terms appropriately it can
be seen that divp G is a sum of three divergences of the sourceless vector W,

~ 0 0 0
diVP (GSO) = Sx - diVP WO +Sy — diVP WO""Sz - diVPWO = 0.
0yo 0zq

0xo

The outcome of the curlp curlp operation on vector G is a third-order polynomial of
the variable k, . It suffices to show that the coefficient standing at k; in any power is not
equal to zero. We calculate the coefficient at k3. We perform the successive differentiations,
leaving only the term having the coefficient at the highest appearing pewer of k, :

G = =V (W, - 50)+58o xcurl, Wy +s, x curl, Wo— V(W * 8).

Making use of the formula for the gradient of the scalar product of vectors for the proper
pair of members yields

G = —(s0 VeWo—(so - VOWo = —(rxe) [so " (Vpg+Vr8)]

where
-~ @ Ven - —— Vpfif0)
& . Qr@+r g &~ A ro+r- @ P/
In first approximation we have
G ~ ik(rx@)g[so - (ro+@o)]- (A4.2)

Application of the formula for the curl,
curl pa = pcurl a—axvye
twice to (A4.2) leads in first approximation to the result
curlp curl, G & —kig[so - (Fo+00)] [(rx @) x ro]xre # 0

thus proving b).
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