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In the first order perturbation theory with respect to the Hamiltonian of the spin-phonon
interaction H, and in the second order with respect to H; the corresponding shift of the
Curie temperature T3 — T, has been found; Hj, contains the n-th power of thermal displace-
ment. The first order correction to Tg increases it, while the second order one decreases 7% ;
the total effect of the spin-phonon interaction makes the Curie temperature higher.

1. Introduction

The interaction of the spin system of a ferromagnet with other, non-magnetic degrees
of freedom of crystal affects the relaxational and thermodynamical characteristics of the
system. The corresponding effects in the case of relaxational characteristics have been
considered in numerous papers. While the influence of these interactions on the thermo-
dynamical characteristics of the spin system (the static spin correlators, the Curie temper-
ature 7.”) has not been actually considered. As to the spin-phonon interaction its effect on
thermodynamics of the spin system of the Heisenberg ferromagnet has been considered
in [17, [2].

Szaniecki [1] showed the effect of the spin-phonon interaction on the spontaneous
magnetization of the Heisenberg model. In the same model Kumar [2] studied the re-
normalization T2 — T, of the Curie temperature (CT) due to the spin-phonon interaction.
It appears that if one has in mind the vicinity of the Curie point a systematic study of the
influence of the spin-phonon interaction on the thermodynamics of the spin system in
this temperature range should be naturally started with considering the corresponding
renormalization of T.2. This is the aim of present work. However, before we formulate the
problem in more precise terms we shall consider the way it has been solved in Kumar’s
paper [2]. To do this we shall introduce some notations which will be used in what
follows.
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The Hamiltonian of a system of exchangly coupled spins interacting with phonons
will be written as

H =H,+H;,, Ho=H,+H, H;,=H,+H, 1)
Hp = ;hwkjal:_iakj’ Hs = - ; J(an)S:S:‘n (2)
J n#m
Hi= = 3 VIR (1SS
Sy, n¥Fm i
H, = =% Y, V'VU(R,,) (uy—uz) (uf —ub)SIS?. 3
n#m S o )

Here H), is the lattice Hamiltonian in harmonic approximation, so that @;; is the phonon
destruction operator of thé jth mode with a wave vector k and the frequency owy;; Hj is
the Hersenberg exchange Hamiltonian, so. that J(Rm,,) = J(R Rm) is the exchange
integral between the n-th and m-th spins. '

The terms H, , of the Hamiltonian of the spln—phonon interaction obtain, as usual,
by expandlng the exchange integral in a power series of thermal displacements uj of
nueclei. In (2), (3) and further throughout the repeated Greek 1ndlces of the Cartesian
coordinates mean summation.- )

In Kumat’s paper [2] in the formahsm of two-time retarded and advanced Green
functions [3] the mass operator for the Greenian® Gy (@) = <{S; [SZ>>g, S5 = N~ "a > exp

n

(—iqR,)S% S = S} £ iS}) is obtained in the second order perturbation theory with
respect to the Hamlltoman2 H,. However, he does not take into account the spin-phonon
contributions to the Greenian gg(a)) (([ H,]|S~,>>o- The Green functions g (w) and
KILS7 Hyl, Hl] ISZ, >, Were decoupled in [2] in a different way., Now the static spin
correlator. Q(q) = <SZ8% > = Tr[SZS% , exp (— BH)] [Tr exp (— ﬁH)]— = (kgT)~! was
decoupled in [2] into the products of (%) = /NA(g) o,0 = {SZ>3 As a result at
T}» T,—0 when o — 0 the mass operator obtained in [2] turned out to be ~ ¢2, the
conformity principle for the results [2] proved. to be violated: at T « T, the Greenian.
G,(w) calculated in [2] does not pass into the one-magnon Green function* obtained in [5]
in the same (second) order perturbation theory‘ with respect to H;. Finally, paper [2]
gives only a general expression for T,—T7; the numerical estimates of the amount of
renormalization of CT being not made in I2]- : -

In the present work we shall obtain the renormahzatlon of CTina perfect one- domarn
cubic ferrodielectric due to the spin-phonon interaction (the second order perturbation
theory with respect to H,; and the first with respect to H,). The following assumptions
will be made. (a) The first random phase approximation (RPA-I) will be used so. that
calculating G,(w) in the Green functions containing more than one spin operator on the

1 The two-time Greenians are determined similarly to [3].

2 The term H, is not taken into account in [2].

3 A similar procedure was used in [4] when considering G,(w) taking into account the sprn-phonon
interaction.

4 This remark also applies to the results of paper [4].
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left of | the (SZ> will be taken outside the Greenian sign. As in the case of H;, = 0 we
have a right to expect in the RPA-I that [6] i

1 Q,
G (o) e L -0, lim—*# 0, oo, @)
' n,a)—Qq C gm0 O :
only now
B . 20‘5 \ st i H - - . o -
0, # 0, = 2 IO-I@].  J@) = TIR)™, Ti@=0. ()
n S q

(b) The back influence of the spin system on 'pliorrons will ‘be neglected (cf: [7]. In other
words, the spin-phonon interaction is treated adiabatically, the spin system of a magnetic
playing the role of a “slow” subsystem. Therefore it can be expected that the results ob-
tained will be valid with the condition ‘ . o Pl
| T0<T, (6)
“where Tp is the Debye temperature kBT p = h max w,” = ﬁa)mj A farrly wrde class of
ferromagnets exists whose parameters satisfy condition (6) [8]. (c) At H,,, = 0 the palr

spin correlators are 1sotroprc in T2 <S+S_q>o = 2Q0(q) Where < >0 ‘means averagrng
over Gibbs’ ensemble with the Hamiltonian Ho

2. The second order perturbation theory

First, in the second order perturbation theory we shall take into account the inter-
action described by the Hamiltonian H, (3). We shall make the canonical transformation,
so that the terms linear in phonon operators should be omitted from H,+H; (cf. [7]):

akj ;_) bkj 4—}7kj' (7)
Here the operator Fy; contains only spin operators. Then, as is easily seen from (1)~(3)

s z [l VIR, (e e~ Emystst - (8)

F
J2MNh 2Mthok,

ki =

Here M is the mass of a unit cell. In the case of the Bravais lattices considered below the
phonon polarization vectors vg; = —v%,; can be regarded as real [9]. As a result

H—~>H, H,= HP+H;, H, = Zhwi(jblj-jbkj;
o

H;_ s 'Tv 2MN Z Z z [Uk] aJ(an)J [UfjvﬂJ(Rpr)] X

. (e_lkR"— e""R'“) ( eszp_ e"‘R’)S,’,lS,'}, S;’,Sf =

i
!
|

Viky, by, ks, k)A(ky + Ky + Ky + k4)Sl%ISI}c'ZSZ331‘:4 )

kikakska
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1 1
V(ky, ko, ks, ko)A +Ey+ ks +ky) =— — st
(ky, Ky, k3, ky)A(ky +ky+k3+ky) M wfj
kj

+ Ay (k)] [Awj(ks) + Ay j(ky) Ak + ko — K)A(ks + ko + K),
Apj(x) = (rvy)J (%) (10)

With the assumptions (a), (b), (c) at T = T, we obtain from (9), (10)

Q,—w, B 4

¢  MhN

[Aij(k)+

1
Z par [Awj(k) — A (g)— Axj(k— )] {Q(K) Ay (k) +

kj
+Q(k—q) [Af@ + Ak — 9]} (11)
(g = ling [0(BAh2)] — Qo(g) = (2B2)~" [J(0)— J(g)I™ according to (4). This sub-

stitution is necessary in (11) since we limit ourselves to the second order perturbation the-
ory with respect to H;. At aq <1 (a is the lattice constant) in cubic crystals where
hw, = 20 Ja*q?, J is the exchange integral, Z is the coordination number. Similarly, hQ, =
= 20la?q?, I = J(1—A4). By this the relative renormalization of CT (T, —T°)(T) ! =4
is related to the renormalization of the exchange integral to which the CT is proportional.
According to the definition of 4 we obtain from (11):

= ! 1 2
e 3MNa?p°J Z 0, [J(0) - J (k)] {Aki(k) (V) Ay (k) +

kj

. A (k)V*J (k)
+[ VoA, (k) —V* A (K)lk=0] I:VaAkj(k)_V A ()| =0+ JET_J(E (12)
vy in Ay ;(k) must not be differentiated with respect to k in this formula. For a numerical
estimate of the quantity we use in (12) the spherical approximation for J(k) and the iso-
tropic Debye model for the phonon spectrum of a crystal when wy; = ck, vg; = k% ;
for transversal phonons k,vf; = 0. Then

T? 1 v _ hk

4= }C_anl(z)a [(2) = 3z ‘—13(111?—22 Y62, = M—cm (13)
where k,, = 0,;c! = maxk, a*k), = 6n?, vis the volume of a unit cell. For three types of
cubic lattices, according to (13), f1(6) = 2.16; f1(8) = 0.83; f1(12) = 0.17. If evaluating
the integral in (12) we abandon the approximation of small ak, isotropy and the nearest
neighbour approximation |f1(Z)| = O(1) for 4 in the formula (13). Since in the given
order perturbation theory, by definition, |4]| < 1 condition (6) follows from (13) as it
must. Now, we shall note that 4 > 0, i. e. when the spin-phonon interaction H, (3) is
“turned on”’ the CT decreases. In this connection we shall note that the effective Hamil-
tonian H, (9) resembles the biquadratic exchange Hamiltonian. As shown in [10] in the
constant coupling approximation [11] the CT decreases with increasing the integral of
this exchange J’ (having the same sign as J). Further, as is shown in [12] basing on the
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static scaling theory [13] the CT linearly decreases with increasing J’ in a first approxi-
mation with respect to J'J-1. Thus our result (13) is in agreement with the results of in-
vestigation of the effect of biquadratic exchange on the CT.

3. The first order perturbation theory

Now, let H,,, » H,.In the approximations (), (b), (c) we shall obtain the expression
(4) where Q, > Q, and

Q,—o, 1 z 1 pehar; 2
_— = - — e Cth e — kava"‘- ava' J k+ -
. MN oy 2 [(k"vx jTd U 1) (k+q)
T ’

—(q°vi)* () — (K0 (B)]. 14

Hence we find the appropriate renormalization of the CT for cubic crystals:

h 1 Bha,;
(e —— — cth =—= [2kPvE V*I(k)+
4 6MNa3J§ Jog 2 L2k VI 8)
kj

+ 3P0 )2 (VY2 Ik + I (k) — J (0)]. (15)
Clearly, this expression can be written as
4" = nf(2), | 12(2D)| = O(1). (16)

Let us assume for a moment that 7.2 > Tp. Then, according to the (13), (16)'|A| > |4']
must be. On the other hand, in this case according to the definition of T}, we can make
a substitution cth (3fohwy;) — 2(Behw,;)~* in (14), (15), after which it is seen that |4 |~ |4’
from comparison (12), (15) and we come to a contradiction. Consequently, results (12),
(15) “automatically” include the condition of adiabaticity (6) for the renormalization of
‘CT. With this condition as follows from (15) in the isotropic Debye model

7 = SU 2t Tc04 v 17
fi(Z) = — aj[ﬁ"‘ﬁ(ﬁ)]—’— Pk 17

so that f5(6) = —1.25; f5(8) = —0.625; f,(12) = —0.313. It is seen from (13), (16) that
|[4] < |4"]. Consequently, under condition (6) the spin-phonon interaction leads to in-
creasing CT as compared with T2.

For various values of the crystal parameters # ~ 10~2—10-3. Thus, the renormaliza-
tion of the CT owing to the spin-phonon interaction accounts for several percent at best.
With the condition (6) it does not depend on the atomic spin S magnitude and the exchange
integral J.

For crystals whose parameters obey the condition (6) it is difficult to single T out
.of the experimentally measured value of T,. Therefore it should be taken into considera-
tion that if the CT is interpreted as characteristic of a “purely” spin system there is an
«a priori error of the order of +A4’ in the experimental value of the CT.

N[
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It follows from comparison of results (13), (16).that the parameter 5 plays the role
of the effective coupling constant when considering the influence of the spin-phonon
interaction -on the spin thermodynamic characteristics of a magnetic (¢f. [14]). It means
that in the same order (e. g. the second order) perturbation theory the corresponding
“spin-phonon” correction from the contribution of H, to H,,, if at all non-zero, will be
proportional to %", n =1, 2, 3...

Discarding condition. (6) the influence of the spin-phonon interaction on the CT can
be taken into account, in principle, by means of the self-consistent Konwent and Plakida

formalism [15].
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