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The differential equation determining the spin correlation function in ferromagnets,
for temperafures above or at the critical T, is derived with the accuracy to the third order
terms. These nonlinear terms play a decisive role in the interval of temperatures 7, approxi-
mately given by the condition |T—T,|/T, < 10~*

This follows from the fact that they are practically independent on temperature, while
the linear term proportional to K, vanishes at T.. The approach of Smoluchowski in his
critical opalescence theory is thus extended to cover the correlation function. The numerical
solution of the nonlinear equation is approximated analytically by the spin correlation of
the form A exp [—d(|x|+|p|+ |z, strikingly confirmed by the neutron critical scattering
experiment in the ferroelectric BaTiOs. The various approximate forms of the cross-section
for a monocrystal and a polycrystal, following from this correlation, are discussed with
respect to the temperature shift of the (main) maximum of scattering.

1. Introduction

The importance of fluctuations in magnetic moment in the critical region follows
from their relation with the correlation function between spins. The space-time dependence
of critical correlations is expressible through the space-time dependence of critical fluctu-
ations. A justified description of the behaviour of critical correlation of spins is attained
via the derivation of the differential equation which the correlation function should obey.
In the static case, which we shall treat here, the equations for the magnetic moment distri-
bution in space and the space dependence of the correlation function are equivalent.
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What is true for the magnetic moment distribution is also true for the correlation function
between spins.

In the contemporary literature, when the correlation function is derived as a solution
of a differential equation, the latter is a linear one, corresponding to the original Ornstein
and Zernike approximation. In the classic critical opalescence theory of Smoluchowski
[1, 2] the intensity of scattering at the critical point itself, is determined by the fourth
order term in the series into which the thermodynamic potential has been expanded. It is
just there, where the series expansion has been introduced for the first time. This approach
was accepted by Einstein [3] in his extension of Smoluchowski’s theory. The second
order phase transition theory of Landau serves itself also with the fourth order term in the
series expansion of the potential. This fourth order term will be shown to correspond to
a nonlinear term in the differential equation for the correlation function. This nonlinear
term is accompanied by another one, of the same order of magnitude (and the same sign
when appearing in the equation), connected with the spatial inhomogeneity of the magnetic
moment, The importance of these two nonlinear terms in the equation for the correlation
function (spatial dependence of magnetic moment) stems from the fact that they are
practically independent on temperature, while the linear term containing the Ornstein
-Zernike parameter K7 changes with temperature like (Z,—7,) (y being the critical
exponent). Thus in the immediate vicinity of the critical point, which will appear to
be determined by the condition (To—T,)/T, < 10-* the parameter K; loses importance
in determining the correlation function. The nonlinear terms lead to a correlation func-
tion of finite range at the critical point. The calculations will be done for temperatures
above the critical point only, although a similar result is expected to hold when temper-
ature approaches T, from below. The conclusion concerning the limited role of the para-
meter K7 determines the limits of application of the scaling theory to temperatures outside
the border given by (To—T,)/T, = 104, 1t follows from our theory - that the transmis-
sion of neutrons at the critical point has a finite value, contrary to the unphysical con-
sequence of the infinite transmission in the linear approximation. This result corres-
ponds exactly to Smoluchowski’s expression for the critical opalescence cross-section
which at the critical point, although quite large, remains finite.

It is worthwhile to comment on the validity of our approximate model of ferro-
magnet. We shall use the constant coupling approximation which has been shown to give
quite a good description of a ferromagnet at high temperatures, failing only at low temper-
atures [4]. Thus the temperature behaviour of the higher order terms in the thermodynamic
potential need not arise doubts.

2. The thermodynamic potential

Our approach to the calculation of the spin correlation function has been formulated
in [5]. It is based on:

1. Treating a fluctuation in a thermodynamic variable, e. g. magnetic moment, as
a subsystem in a reservoir in the sense of Gibbs, which enables the determination to be
made- of the average spatial distribution of this magnetic moment within the subsystem.
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2. Postulating the relation between the spin correlation function and this distribu-
tion in the magnetic moment in the form®

SE0)8,(0)) = MO)M(r) 2.1

where M| (7) denotes the average magnetic moment in a small volume centred at 7 which,
eventually, may be reduced to the volume per one spin.

The distribution in the magnetic moment is determined by the variational principle,
which states that for the subsystem in local equilibrium, the increase in the thermodynamic
potential (equal to the work neccessary for creating a fluctuation) is maximal subject to
some physically imposed boundary conditions, for the magnetic moment in question.

It has been shown previously [5, 7] that the form of thermodynamic potential de-
pends on the choice of the intensive variable coupled with the magnetic moment M. Thus
it may be either the external field B,, or the local field B+ B,,, (B,, denotes the molecular
field), and that the resulting linear differential equations are of different types.

The calculation will be limited to temperatures above or at T,, and to a vanishing
external field. The Heisenberg model of cubic ferromagnet with spin s = } at the lattice
site will be assumed. In the constant coupling approximation, the thermodynamic pro-
perties of a subsystem of N; spins are expressed in the terms of the properties of a pair of
nearest neighbour spins. For a pair of spins situated at the lattice sites 7, 7+, the internal
energy is determined by

3
Epis=Tr gPH® = ¥ fHD 22
v=0
where ¢@ is the density operator for a pair of spins
o = e PF (T eIFY, B = (KT 23)
r;'fe = _2J§r ) §r+a—2u(brsi+br+asf+a) (24)

J being the exchange integral and b, the fluctuation in the molecular field and where H®
is the Hamiltonian of the pair of spins

H® = —2J8, " 5,4a—2uBexz ™ (5] + 574 @.5)

while H® denote its eigenvalues, and z the number of nearest neighbours of a spin,
while

fv — e—ﬁev( io e—ﬂsv)—l (2.6)
and where finally the &, denote the eigenvalues of the Hamiltonian 2, in the singlet and
triplet states of the pair of spins:

g0 = 3+ (I +(udb)?)*

&g = 3J—(J2+(uoby?)*

gy = —3J—uY,b
g3 = —3J+pdb 2.7

1 Relation (2.1) corresponds to one version of the static scaling hypothesis [6].
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with
ob = br+a_br’ Z b= br+a+br'
The free energy of a pair of spins is given by
Fr,r+a = Er,r+ac_ TOSr,r+u (28)

where S, , ., denotes the entropy

3
i z—1 (1-8%s-1
Sr,r+oz = —k —va lnfv+ N In {4 (1+S*)S*+1}] =
’ v=0

= - k[é:o SHnfi+(z-1)In g, (8] 2.9
5% = fi—f,. (2.10)
Writing
R ) @1
we have M
S =Rz 2.12)

and the free energy takes a form more convenient for further calculations:
3
Fr,r+a - ﬂ-i 11‘1 Ze_1 +ﬁ_1(Z— 1) lIl gr,r+a(S*)+Ze_1 Z f;(Hﬁ)_sv)‘ (2'13)
v=0

For the other pair of variables, namely B,,+B,,, M, the corresponding free energy D,
is obtained by replacing in (2.8) the internal energy E,, ., with

3
Ur,r+:x = ZO fvgv (2.14)
which results in
qu,r+az = ﬂ_l ln Ze—1 +ﬁ_1 ln gr,r+a(S*)' (2'15)

3. The differential equation

In order to derive the differential equation for the fluctuation in the molecular field
b(r) (which will be subsequently expressed in the terms of the fluctuation in magnetic
moment) we shall expand the potential F,r1. In a series with respect to 6b and )b with
the accuracy to fourth order terms. The next order terms in b are in the sixth power,
and those in )b are also in the sixth power, since the uneven powers in }'b which appear
in the expansions of the f, cancel .out in the expressions for Z, and In g(S*). Even
the fourth order terms in b could be rejected at once since in the following they will be
shown to contribute to the differential equation terms of higher order than the remaining
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ones. The leading higher order terms in the differential equation stem from the powers of
Y b in the potential. The term (Z b)® contributes to the differential equation a term propor-
tional to 5° with the coefficient by an order of magnitude smaller than the term propor-
tional to‘" b® which is brought about by (3.b)* in the potential. This indicates the fast
convergence of the expansion.

Our procedure corresponds with the approach of Smoluchowski [1, 2] in his theory
of critical opalescence where the free energy was expanded in a series with respect
to the fluctuation in volume (or density) of the subsystem, with an accuracy up to the
fourth order term (proportional to 0*P/0V?®), which does not vanish at the critical point.
The difference is that Smoluchowski did not account for the mean spatial inhomogeneity
in the fluctuation, and treated the subsystem as a whole.

We now proceed to the expansion of F, . ,. For the f, of (2.11) we find the following
expressions

fo = n®*[1-2BIx>+2BJ(1 + BI)x*]
=07 +y+ 3y + 3%+ &)%)
T2 =07 P [1+2BT%% = 2BJ(1— BJ)x*]

=T =y 3y = 59+ S5 07 3.1)
with
uéb
x="7, y=FuLb n=exp(=p) (32)

and correspondingly

B'Z:t = Bl ey (U4 a5 a3 + a7 Pyt +

+2a1%a,y* —aytay—a7 tay—a; 'y — 5 a7yt (3.3)
with
ﬂl = 3+7]2
a, = 2J (1—n*)x>

as = 2BJ [ = 1)+ BI(1+9»)]x*. (3.4)

Further on we find that
n g,,:+,(8) = z7 ' [In4—(S")+ £ (S)*] (3.5)
" =247 [y—a7 'ay+( —ai Dy’ 3.6)

so that we have
ﬁ_ 1(2 - 1) In gr,r+oz(S*) =

z—1
= ! — {In 4—4a7?[y* =247 a,? +

+(& ~2a7"+ $a ) (3.7
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Finally, calculating

HS) —gy = —4Jx*+8Jx*

HR—e, = p'y
HE —e, = 4Jx*—8Jx*
H)—e3 = 7y . (3.8)

we find for the last term on the r.h.s. of (2.13) the expression
3
BZ;' Y f(HD ) =
v=0
= 4Ja; B —in*)x*+2a7 'y  +

+(G a;—=2)ag 2y =8Ja; p—n)x?y? (3.9)

where the terms proportional to x* have been already omitted. Adding up the expressions
(3.3), (3.7) and (3.9) we find for the increase in the free energy due to fluctvations in the
molecular field the expression

AF, 4, = A (Y b)*+B(6b)*+C (X b)*(6b)*+D (3. b)* (3.10)
4= pB G+ (712— Z;“)

B = W*f*G+n*)T* QBN =2 ~1")

with

C = WG+ (=) G-+ QB (8 = —3(3+n2)>

z—1
D = p*p*G+nH* l:% G+’ =3+ % — (7—714)]- (3.11)
In these formulae the terms proportional to (6b)* have been omitted since they con-
tribute higher order terms to the differential equation than the ones left,

The next step consists in passing to the continuous variable 7 and in expanding b
and 8b in Taylor series. When this has been done, one finds the following relations

2
(TB)? = db*+ (%%-d?) +2b 2 (dr)
2 _ (9 -"2
(6b) = (a? dr>
2
(TbY(6by” = 467 <%-d?)
r

b N (0% .
(X b)* = 16b* +24b*( —=+dr ) +16b° | —5 (dr)* ). (3.12)
or or
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On the r.h.s. of the relations (3.12) only these terms have been retained, which will con-
tribute to the differential equation terms of magnitude not exceeding the third order.
In order to take into account the cubic lattice structure, we have to take a sum over the

z pairs to which a spin belongs, and we find

i (6b)* = 2a*(Vb)*
i (Yb)? = 4zb®+2a*(Vb)* +4a’bab
a=1
i (Zb)Z((sb)Z — 8a2b2(Vb)2
a=1

S (XUb)* = 162b* +48a*b*(Vb)* +32a°b*4b (3.13)
a=1

where a denotes the lattice constant. After having inserted the expressions (3.13) into the
free energy formula (3.10) summed over the z pairs, denoted by AF,, we may subject it
to the variational procedure. We find for the corresponding terms in the Euler equation
the expressions

dAF, . ,
— 824b+4a”AAb+64zDb% +

+16(C +6D)a’b(Vh)?
d dAF,

E ilfi ab
i=x,9,2 ¥ d( )
0x;

—32a*(C+6D)b(Vb)*

= —4q*AAb—4a’BAb—

- d*  d4F, 2 ) )
2 7y = 4a’Adb+1924*Db(VB)’, (3.14)
i=x,y,z ‘ d
=" a(5)

By the relation between the molecular field b and the magnetic moment? M

2

2 Note the difference between the magnetic moment M at the lattice site Fand the magnetic moment m
of a spin treated as a member of one of the z pairs to which it belongs. The relation between them is
M = zm [4, 5].
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we replace the variable b by M and adding the terms on the r.h.s. of (3.14), we obtain the
differential equation for the spatial dependence of magnetic moment in the fluctuation
in the form:

AM~KIM—K ;M3 —K;yM(VM)? = 0 (3.16)
with
Fou z—4
, 2z z
Ki=—— - —— 3.17)
a [z—-4 -1 2 .4
R I UM Sy
4z—-1
; (3 o (7-1- %0 +712)2(3—’12)>
A Jiigh - A (3.18)

s ( QBN B-21 =)+ —Z—;-f —nz)

1 , A
(s (-1 = 3G G4+ 28D <3n? + Z—?) (3—2112—114))
Ky =~ — e _— AN . (3.19)
4ﬂ2<(2ﬁJ)‘1(3—2112—114)+ — —nz)

The first two terms on the Lh.s. of (3.16) represent the Ornstein-Zernike equation for the
correlation function. The importance of the two third order terms rests in their qualitatively
different dependence on temperature than K7M. The coefficients K and Ksv change

o1

A
Ky KT wh
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3
e i KE YA e e 720002
N | 1 " L - i -
0 > 7 6 5

Fig. 1. Comparison of parameters X; and \/E #A in their dependence on temperature, for certain
values of A4
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very slowly with temperature and in the interval of several tens of degrees above T, may
be treated as constant and equal to their values at T,. For the b.c.c. lattice (z = 8) one

finds
Ki(T,) = 0.714a 22

Ky(T)W(T,) = 1.008u-2.

On the contrary K7 is close to T, proportional to (T—T,) in our approximation (Fig. 1).
Thus in the immediate vicinity of the critical point, K7 cannot play any role in determining
the behaviour of the correlation function.

4. The case of the local magnetic field as an intensive variable

The approximations and calculations are in this case analogous to those of the previous
chapter. We therefore write down only the final result. Applying the variational procedure
to the increase of the thermodynamic potential @ given by (2.15) one finds the following
equation for the spatial dependence of magnetic moment in the fluctuation:

AM+EKAM+K,M?+ KcM(VM)? = 0 @.1)

with the following values of the coefficients:

2z <3+’12+4 Z——z-l—>
K2 = > == — 4.2)
((213J)'1(3—2n2—114)—n2— . )
I ET)
K, (4.3)

T 6ai? o Tz—4\
‘B ((ZﬁJ)"1(3—2n2—n4)—n2— z )
V4 -

(Jz- G+1) O—n)+8 % (1=19) =B G=21 =1 (11 - 2))
K= ——— g - . 49
2 iy m? a2 12—4
4\ @) B2 =)= = —

Since K, is practically temperature independent, the nonlinear terms remain always much
smaller than the linear ones, and the linear approximation proves to be sufficient for the
local field and magnetic moment variables.
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5. Numerical solution of the nonlinear equation

While looking for the numerical solution of equation (3.16) we have been guided by
our earlier approach of [8], where we have introduced the solution of the Ornstein-Zernike
equation for a cubic lattice of the form

Ky :
g(x, y,z) = Aexp| — ﬁ(lxi+1yl+ﬂ|) (.1

where x, y, z refer to the crystalline axes in the cubic lattice. This solution fulfills the demand
of reflecting the crystal lattice symmetry, a feature which the correlation function should
obviously have. Radial symmetry can enter only at large distances or in the case of poly-
crystals. For the body centred and face centred cubic lattices the direction of the preferred
directions is not unique, since they may be chosen either along the edges of the cubic or so
as to point to the nearest neighbours of the spin at the origin. For the present we shall not
discuss the latter possibility. The form (5.1) of the correlation function has found already
a striking experimental verification in the neutron critical scattering in the ferroelectric
BaTiO;, which has approximately cubic symmetry [9]. The constant intensity curves
in Fig. 5 of that paper, follow exactly from the correlation (5.1). While rewritten in terms
of the variable

¢ = [x|+IyI+]z] (5.2
the equation (3.16) takes the form
a’*M dM\?
3 e —KfM—K;M3—3K3vM (d_f) = 0. (5.3
ka
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Fig. 2a, b, c. Numerical solution (——) of equation (5.3) together with the exponential approximation
(--—-- ) given by formula (6.1), for 4 = 0.05 and T = T, Tc+0.5° and Te+2°
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\ T=Te +29K
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Fig. 3a, b, c. Nume_rical solution ( ) of equation (5.3), together with the exponential approximation
(- — -= -)and the hyperbolic approximation (--- ‘- +-),ford =01,and T = T,, T,+0.5° and T,+2°

Its numerical solution has been found by the Runge-Kutta method, for the boundary
conditions M(0) = const, M(c0) = 0. There is only one value of the derivative dM/d¢
at ¢ = 0 which ensures a solution which fulfills the imposed boundary conditions. The
value M(0) = Ap of magnetic moment at the centre is a parameter which may be varied
within the limits 0 << Ay << u. The behaviour of the numerical solutions for two values of
the amplitude 4 is shown in Fig. 2a, b, ¢, 3a, b, c. Let us notice that the nonlinear terms
in the equation (3.16) are important only from 7', up to a few degrees above T, (for iron
the interval is (T, T,+2°). For higher temperatures the term with K> dominates the
behaviour of the correlation function.

6. Approximate exponential solution

For discussing the properties of the solution of the nonlinear equation it is convenient
to compare the numerical solution with a solution of the form (5.1), namely
M(x, y, 2) = pd exp (—(|x|+ ||+ z]) 6.1)

where the amplitude 4 remains a parameter which may be varied within the limits 0 << A1,
and ¢ is determined by the formula

K2 K ZAZ 4
5= C|emingt 2 6.2)
3(1— Kyvp?d?)

where C is a temperature dependent parameter determined numerically, (Fig. 4). The
correlation function of the form (6.1) leads to the cross-section for neutron scattering
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which covers the experimental data for all the values of the ratio g/ at all temperatures
T > T, [10]. The numerical solution and the solution (6.1) have been compared in Fig. 2, 3
for some values of temperature and of the amplitude 4. The parameter C has been chosen
so as to minimize the difference of the integrals of the numerical and analyfical solutions.
The approximation (6.1) to the numerical solution is rather poor quite close to T, and
a better one may be found (vide the next chapter), however, it is preferable from the point
of view of facilitating a qualitative discussion of the properties of the cross-section, as
has been already done, [10]. The formula (6.2) for the inverse formal correlation range
enables one to evaluate the interval of temperatures within which the term with K7 in the
differential equation may be neglected as compared with the nonlinear terms. The intervals
of temperature where K7 is of the same order of magnitude as K32 4% or by an order of
magnitude smaller may be read off from Fig. 1, and the condition + |T—T, /T, < 104

for the decisive role of the nonlinear terms may thus be deduced, The formal correlation
range 6~* is finite at the critical point, leading to finite transm1ss1on and removing the
unphysical -result-of infinite transmission of the conventional. theory. This deficiency of
the Ornstein-Zernike cross-section was the subject of Placzek’s investigation [11], who
tried to remove it by taking into account the dimensions of the scattering system. However,
his cross-section formula calculated for unit volume depends on the volume (through
the radius R) of the scattering system which is not satisfying. Our resuit corresponds
with that of Smoluchowski in the critical opalescence theory [1].

7. Temperature shift of the main maximum of scattering

The condition for the temperature shift is given by

d {do ~0 71
ﬁ<ﬁ>— (7.1)

We shall discuss the consequences of the condition for monocrystals and polycrystals.
In both the cases we shall neglect the temperature dependence of the amplitude 4, which
makes our conclusions approximate, but only in a quantitative sense. At constant A

condition (7.1) transforms to
d [ do
L) <o (7.2)
dé\ dQ

Monocrystals. We shall discuss the magnitude of the shift depending on the
direction of the scattering vector g = k—ko. When the form factor and the constant
terms are omitted, the cross-section following from. the correlation (6.1) has the
form [8]:

do As®

W) P+ D) (P D) -3
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For ¢ parallel to one of the cubic axes, say, to [001], the cross-section (7.3) reduces to

do B A . (74
dQ  8(6%+q¢»’ 4

Application of the condition (7.2) to this cross-section (4 = constans), leads t'io4no shift.
The interpretation should be that the shift is small, if detectable at all. :
For q in the direction [110] the cross-section (7.3) reduces to

do Ab

aQ  (0*+1q°)°
and the application of the condition (7.2) leads to the relation determining the position
of the maximum on the temperature axis:

(7.5)

0%.= }q¢* v (7.6)
or with the expression (6.2) for J to the relation
K% =pod®~p: - an
Do = 56—2 (1-Kzvu*A?)
p1 = K242

The equation (7.7) has no solution for g < py/p,, which means that for such g the maximum
appears at T = T, that is at the boundary of the interval in which the cross-section is
defined. This means no shift for too small ¢ values. The limiting value of g at which
the shift starts depends on the value of the parameters A and C. As may be seen from
Fig. 4, the parameter C is practically constant when temperature exceeds T, by a few

C
0r A=0.01
A=005
A=01
28]
o8
07

3 , ) : 1 : ; ; i
0 1 2 3 4 5 6 7 8 9 0 7T-Tc

Fig. 4. Dependence of parameter C in the exponential approximation of the correlation function on
temperature, for amplitude 4 equal to 0.01, 0.05 and 0.1
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Fig. 5. Dependence of the temperature shift of the (main) maximum of scattering on the scattering vector g.
Curves I and II correspond to g parallel to the directions [110] and [111] respectively. Curve p represents

the shift in polycrystals
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Fig. 6. Dependence of the temperature shift of the (main) maximum of scattering on scaitering vector ¢
for a large value of the amplitude 4 = 0.7. Curves II and p represent the shift for g parallel to the direction
[111] in a monocrystal, and in a polycrystal. These curves have been calculated with the help of the ex-

ponential correlation (6.1) with C equal to the limiting values: 0.711 and 1
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degrees, so that what remains in this case is only the dependence on A. Since the parabola
(7.7):

K? = f(q?)

starts from below the g axis, the dependence of the shift on g is stronger than g2, As a matter

of fact, the magnitude of the slope of the curve is influenced by the value of A through

the term p,/p,, which determines the point of intersection of the parabola with the g axis.
For g in the direction [111], we find

s3
&~ "
and condition (7.2) leads to the relation
52 =gq?
or
Ki = pod®~pi (1.9)

’ 3 . 2 42
Po = gz (=Konid?)

Py = Kyp?4®

with a similar meaning as before. Some examples of the magnitude of the shift according
to formulae (7.7) and (7.9) are represented in Figs 5, 6.

Polycrystals. The cross-section is obtained from the formula (7.3) after averaging
over the directions of the scattering vector g, and has apart from the form factor and
constant terms the form:

d_a 15 arctg (\/1 +2p_/p_)—|~ar_citg (1/\/1 +21_7)
Q (1+3p)1+2p

N

o

p = 8*q% (7.10)

The condition (7.2) is now rewritten as

d (do

The value of p = p,, determining the maximum has to be found numerically. Equating
this value of p to 6%/g> we get the relation for the shift in the same form as that for mono-
crystals

0% = Prnax 4% (7.12)
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8. Another approximate solution

This has the form

M X5 Vs = .
(532 = g )

for K? - 0, that means 7'~ T,. Insertion of the solution (8.1) into the equation (4.3)

leads to the expression for B as a function of 4, for two limiting cases, (a) when & — 0,

and (b) when & — oo. For the case (a) one finds

AVK,
o~ F :7‘/ 2 (8.2)
\/6—:’K3vu A4

while for the case (b):
B =% uAK;. (8.3)

For A <1 the difference between the two expressions for B is small, however, for 4 — 1,
the approximate expression of the case (a) is better, because the function (8.1) with B©@
coincides with the numerical solutions for a larger interval of ¢ values than with B®,
For z = 8 one finds for the ratio B“/B® the inequality
B@ —

1< 7B < V2 (CX))
where the Lh.s. corresponds to 4 = 0, and the r.h.s. to 4 = 1. The function (8.1) approxi-
mates the numerical solution the better, the smaller is the amplitude A.

9. Radial symmetry solution
For radial symmetry the equation (3.16) takes the form

&PM 2 dM

+ - — —KfM—KSMS—KﬁM fl—Ai ’ = 0. 9.1)
dr? r dr dr

We lay upon the solution the demand of being finite for » — 0, and of disappearing for
¥ — o0. These demands may be met only in the case of joining together two solutions
M, M, at an intermediate point 0 < r < oo. To this end we have chosen the point r = a,
“@” being the lattice constant.

This is, as to the order of magnitude, the smallest distance from the centre of the fluctu-
ation which has a physical meaning. Numerical solutions of the equation (9.1) presented
in Fig. 7 have been determined with the assumptions

My(r=a) =4, (dM,[dr),-oq=0 0.2
where M,(r) denotes the solution for 0 <r <« and the conditions

My(r = a) = My(r = a), (dM,dr),=y = —Mx(a) 1 +K; a) 03
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Fig. 7. Numerical solution of the equation (9.1) in the spherical symmetry approximation, for 4 = 0.1.
The inset shows the behaviour of the derivative dM]dr for small values of r/a, where a denotes the cubic
lattice constant

TABLE 1

A comparison of values for the numerical solution and the Ornstein-Zernike function

T, T.+0.5 To+2
N Mg | Eq 1) Eq. (9.4) Eq. 0.1) Eq. (9.4) Eq. (9.1) Eq. (9.4)
vl \\ x 100 x 100 % 1000 % 1000 % 1000 % 1000
1.00 10.00000 10.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000
6.00 | 1.66730 1.66670 14.18000 14.17400 12.06700 12.06000
11.00 0.90989 0.90910 6.58110 6.57350 4.76460 4.75690
16.00 0.62586 0.65010 3.85090 3.84260 2.37370 2.36480
21.00 0.47708 | 0.47620 2.49820 2.48930 1.31310 1.30290
26.00 0.38553 0.38462 1.71890 1.70950 0.77282 0.76094
31.00 0.32352 0.32258 1.22910 1.21910 0.47557 0.46149
36.00 0.27873 0.27778 0.90318 0.89261 0.30432 0.28736
41.00 0.24486 0.24391 | 0.67769 0.66640 0.20316 0.18245
46.00 0.21836 0.21739 0.51715 0.50503 0.14319 0.11759
5100 | 019705 | 0.19608 |  0.40039 0.38731 0.10868 | 0.07665

the latter ensuring that the solutions can be, in the interval ¢ <r < oo, approximated
by the Ornstein-Zernike function. A comparison of values for the numerical solution and
the Ornstein-Zernike function is represented in Table I. A good approximation the numer-
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ical solution is therefore
Sl Mr)=4;, 0<r<a

M@) = A—;léeXp-[—_,Kl(r~a)]; a<r< om. 94

The analytic solution near the origin may. be represented by the series

2
M) = 4 (1+961 (2) o (%) +) 9.5)

Substituting it into the equation (9.1) we find that
051 = 0
0y = §(KzA*+(K1a)?) . ’ 9.6)

thus demonstrating the character of the analytic solution finite at the origin.
The scattering cross-section calculated with the correlation function (9.4) has the form:

aQ q
4rA 1 e ) :
ol K[ K, sin ga+ g cos ga). ©.7)

This cross-section leads to the shift of the maximum of scattering to temperatures higher
than T, depending on the value of the scattering vector. The condition for: the maximum
of scattering applied to (9.7) leads to the following equation, which determines the tempera-
ture at which the maximum of scattering appears as a function of ¢:

3, 2 1 2q 2
K7+ Kj qctgqa+;1- +K, —a—ctgqa+q +
q2
+qictgga— — = 0. 9.8)
a

In order to prove only the existence of the shift, without determining its magnitude, it
suffices to observe that a solution with K; = 0, that means with Ty, => T, is possible
only on condition that

1
ctgga < — 9.9
qa

1
0<—<m
qa
The sign of equality in (9.9) corresponds to ¢ = 0, and means that the shift begins already
for g = 0, a feature which is not confirmed by experiment. It is always possible to find
solutions K; > 0 for ¢ > 0 which generally means the existence of the shift.
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10. Conclusions

The results of this investigation prove the importance of the nonlinear terms in the
equation determining the correlation function, for the description of the immediate vicinity
of the critical point. Our argument represents an extension of Smoluchowski’s in his
critical opalescence theory. The fourth order term in the series expansion of the free
energy was used by Smoluchowski in the aim of obtaining finite scattering at the critical
point. This argument has been abandoned since the papers of Ornstein and Zernike appeared
on account of the introduction of correlation between volume elements so small as to
contain in the course of time one or no molecule. We have shown that these correlation
effects also do depend on the fourth order terms in the expansion of the thermodynamic
potential, when the temperature of the system s close enough to the critical one. It is expected,
and the work presently in progress confirmes this expectation, that for gases near the
critical point, the role of the fourth order terms in the series expansion of the thermo-
dynamic potential is exactly the same as for ferromagnets. The theory of critical indices
loses its validity close to T, i.e. for |T—T,|/T, < 10~* because the isothermal susceptibility
does not enter into the description of fluctuations in the system in this interval of
temperature.

The usefullness of our exponential approximation to the solution of the nonlinear
differential equation is worth underlining both in the view that it yields all the types of
experimentally verified cross-sections (except for the lateral maxima), and in the view
of its confirmation by the measurements in the ferroelectric BaTiO;.
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