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The effects resulting from anisotropic effective interaction of an electron Fermi liquid
are studied. The results obtained by the author previously are applied in an investigation of
the basic properties of an anisotropic Fermi liquid with a spherical Fermi surface: the specifi-
cation of the point group of the crystal is rather irrelevant here. The relation between the
amplitudes of the effective interaction and the scattering amplitude, the conditions of isotropy
of the effective mass, and the derivative of the Fermi momentum with respect to the external
hydrostatic pressure, are found. Moreover, the stability conditions, other constraints and the
sum rule are discussed together with questions associated with electron-phonon interaction.

In the Landau-Silin approach [1, 2] (¢f. also [3, 4] and the monograph [5]) the
electron properties of metals are determined by the one-quasiparticle spectrum, the
effective interaction of quasiparticles and the kernel appearing in the linearized collisions
integral, provided the low-temperature long-wavelength response of the system is studied.
In a majority of papers on this topic the effective interaction of quasiparticles as well as
collisions kernel appear either in a quite general form or in the isotropic one (i. e. only
with the dependence on the cosine of the angle between momentum vectors on the Fermi
surface). There are some exceptions from the above rule. Recently, Rice [6] considered
the anisotropy of the effective interaction induced by phonon exchange; on the other
hand, systems which can be obtained from isotropic ones by a homogeneous three-axial
dilatation of the momentum space [7, 8] have also been considered. Moreover, the prob-
lem of the most general function invariant under some point group describing, e. g.,
the effective interaction, was discussed by us in the paper [9]. The result of this paper will
be applied by us to investigate the simplest physical consequences of more general effective
interactions, such as static properties, stability conditions and other constraints, the rela-
tion between the effective interaction and the scattering amplitude of quasiparticles (see,
for instance, [5] and [10]), and the sum rule [6, 11]. It is clear that the group-theoretical
analysis of the most general effective interaction is independent of the particular form of
the Fermi sutface as compared with a more physical approach. On the other hand, consider-
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ation of non-spherical Fermi surfaces from the physical point of view leads to serious
computational difficulties even for isotropic interactions. Hence, we confine our reasoning
to spherical Fermi surfaces, i. e. to alkali metals. The effects of anisotropy discussed by
us are important for monocrystals only. Moreover, our considerations rather treat the
problem of the anisotropy induced by bands when the effects are probably small (c¢f. [6]).
Our discussion is restricted to the collisionless response of the system, when the form of
collisions kernel is unimportant.

If the spin-orbit coupling is unimportant, then the effective interaction (depending
on two momenta p, p’ and four spin indices) can be represented as

' f(p> P') = .f;iirect(p: P’) + (o'a-,)fexchange (P, p,) (1)

where both f are symmetric with respect to interchange of p and p’, and ¢ denote vectors
of Pauli matrices. If we assume that (1) is invariant under some point group then, accord-
ing to [9], both functions (1) can be wiitten as

fp, p) = f(pp)+ ; > S 01 [ YD) Y (B))], @

where O; denotes the projection operator of the trivial representation of the group con-
sidered and the summation over (/m) runs over some set necessary and sufficient to obtain
all invariants specific to this group, p = p/|p|. Without any loss of generality one can
assume that £ can be put equal to zero if the pair (Im) or (I'm’) does not appear in the
set mentioned above and, on the other hand, that f;/™ is symmetric under simultaneous
transposition of (m) and (/’m’) in order the function f(p, P') to be symmetric. The functions
(1) can be also expressed as

o nul) nul')

f(PaP)—Z Z Z Z Z {f;.u Z K (P)K (P')]} 3

Here, K;*(p) is a linear combination of the functions ¥,,(p), |m| < [, transforming as the
r-th row of the A-th irreducible representation of dimension d, of the considered point
group. The summation over A runs over all irreducible representations of this group,
A denotes the representation complex-conjugate to A. Moreover, n,(/) determines the
multiplicity of the representation A in the irreducible representation of the three-dimen-
sional orthogonal group and the variables a, b describe the degeneration of crystal har-
monics. Here, without any loss of generality one can assume that

K¥(p) = [Ki®)T f — Kt F(PIKE(P') = 03,0 u0ubn @

where the integration over dQ runs over spherical angles (cf. [9]). As a result of the reality
and symmetry of the functions (1) we have

[ful'] = ).l’ls ;f,b, = }’.)la’l- Q)

Let us now consider problems more closely related to physics. Here, all our conclu-
sions would be much less definite if we would not consider spherical Fermi surfaces. Note
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that small deviations of the Fermi surface from a spherical form can be considered by the
perturbational approach, but this is not our objective.

The dimensionless scattering amplitude of quasiparticles (g) is determined by the
effective interaction (f) as

=f-fz ©)

where the product fg has an operatorial character with the average of the intermediate
momentum over the Fermi surface (for spherical surfaces this is the integral over dQ/4m).
In order to obtain the relation (6) we should define the dimensionless quantities by the
dimensional ones as

fip, p) 2S¢ F(p, p) b1
1 4}: =1 (7)
I DB ADRACE N I
where Sy denotes the area of the Fermi surface, ¥, the velocity of quasiparticles on the
Fermi surface, and F, G the dimensional effective interaction and scattering amplitude,
respectively. In (6) there is no coupling between the direct part of f and the exchange
part of g, and between f;, and g;. If we put f = fo+4f, g = go+4g, where f,, go are

isotropic and Af, 4g are assumed to be small compared with £y, g0, and disregard the
term AfAg in (6), we find after some manipulations

4g = (L+fo) Af(L+fo) . ®)

Let us denote the invariants specific for some group and obtained by the projection pro-
cedure from Y;,.(p) Yy (p') by Wu, ‘(p, p"). The Legendre amplitudes, Q,, of an arbitrary
function Q depending on x = pp’ are defined as follows:

o) = I=ZO @1+ 1DQ,P(x). ©)

From the addition theorem for spherical functions one finds
QW = QWE™, Wi Q = QW™ (10)

Taking into account that the Legendre amplitudes of the operator inverse to (1+f,) will be
(1+£)* and Eq. (2), one can write (8) as

g, p) = 3 S [A+S) A+ )7 W@, P). an
It should be noted that we can also find relations analogous to (10) and (11) if we describe
fand g in terms of the invariants appearing in the formula (3) and separate the terms
corresponding to their isotropic part.

In order to obtain the non-perturbational relation between the amplitudes g and f
one has to take into account the products W™ WX as a result of the term Af4g. This
product is proportional to &;,, and invariant under O, or any other point group considered.
Hence, for I’ = n, this product can be expressed as a linear combination of the invariants
W, with fixed / and »n’, and even Py( pp), but only for I = n'. If the last term is excluded
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for some /, then the relation between the /-th amplitudes f, and g, is the same as in the
isotropic case. The appearance of the term proportional to P, in the above expressions
may seem suspect, but W kW2k0~Po and (for invariants of the group O,, O, T, T}, T
only) W% . W59 = B%,.P, and B m # 0 for some m and m'. On the other hand, this
is strictly connected with necessary vanlshing of the number of specific crystals invariants
for I =1' = 0, whereas for / = [' = 1 this number vanishes only for the groups listed
above. Taking into account. (4) and (6) we can write the relations between expansion
coefficients (3) of the effectlvc interaction and the scattering amplitude. Denoting these
coefficients by 4, and g%, respectively, we can write

o na(l')
gi.ll’ = f}.ll'— ,Zo czl f:ﬁ”gg.‘l’"l" (12)
Now let us seek the answer to two questions:
1) when is the effective mass isotropic, and,
2) when is 0|py|/ou isotropic, i. e. when does the Fermi surface remains spherical under
external hydrostatic pressure? Let us apply the relations between reduced vertex functions
in the “g” and “o” limits [4]. These relations have a simple physical meaning in the pheno-
menologlcal approach [5]. Taking into account that we are dealing with a spherical
Fermi surface we can write, using the results of [4],

50— J.. G(p, )V, ‘1%, (13)
T80 = 194 22 f — F(p, p')V,; 1%, (14)

where now |p| = |p’| = pr and both relations (13) and (14) are equivalent because of
the relation which relates G with F and which can be simply deduced from (6) and (7).
Here, as a result of Ward’s identities, we have

fﬂp_pi a=20 l
M = L Du ’
P (15
v , a=1,2, 3J
= {1 v a=0 } (16)
vy, = p,/m, a=1,2,3

Note that the result (16) for @ > 0 can be obtained only when the excitation energy without
the contribution of the interelectron interaction is equal to p?/2m (m is called lattice or
optical electron mass). On the other hand, F and G denote the spin-direct parts of the
effective interaction and the scattering amplitude, respectively. Both these functions are
invariant under the group considered and can be expanded into a series of the form (2)
or (3). The functions f and g are invariant according to (7), provided the functions F, G
are invariant and vice versa, but the relations between the expansion coefficients (2) or
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(3) of the function F and f (or G and g) are very complicated if V, is anisotropic. More-
over, if we express (13) and (14) by the functions f'and g, then some quantities not having
a simple physical meaning will appear (such as ¥, *d|ps|/du and V5 V3. Hence, it is
useful to discuss the above questions rather in terms of the expression (2) or (3) for the
functions F and G. Taking into account that V,/V, as a unit vector normal to the Fermi
surface is equal to p,/py for spherical surfaces and putting @ > 0 in formula (19), we find
that the condition F{'jy4; = Fj3,7 = 0 is equivalent to the isotropy of ¥,. If this is
fulfilled, then also fl':"zmk'+1 = far411 = 0. Considering (13) under the above condition
we obtain that the same amplitudes of the function G (or g) vanish and, as a result of equiv-
alence of (13) and (14), both of these conditions are equivalent. Moreover, if all ampli-
tudes Fy ;41 = Fpr4q,1 are equal zero, then the relations between the Legendre ampli-
tudes of the isotropic part of the functions fand g for / = 1 remains unaltered in comparison
to the isotropic case (i. e. for Af = Ag = 0) as well as the Landau relation for the effec-
tive mass. Analogously, for isotropic Vp, we find from (13) and (14) for @ = 0 that if
o 7 = fovo vanish (this is equivalent to g5, = 250 = 0), then d|pg|/du is isotropic and
vice versa. In this case also the relation between zeroth Legendre amplitudes of the func-
tions fy, go has the same form as for isotropic systems. On the other hand, we can also
prove that if 8|pg|/ou is isotropic and Fgpy = F3x0 = 0 then ¥, is isotropic. Using the
above results one can easily prove that if F(‘,);;"k = F{3k+1 = 0, then the expression ON/ou
has the same form as for the isotropic system. Moreover, if F{*};,; = 0 and the coeffi-
cient near the invariants Wg 3} vanish in the spin-exchange part. of the effective inter-
action, then the expression for the spin susceptibility also remains unaltered. The above
conclusions can be simply expressed also in terms of the expansion coefﬁcients F2.
the function F (cf. (3)). It is clear that the relations Fo o = 0 are equlvalent to F,%® 20,2k = 0,
k > 0, whereas the relations Fy"5; svey = 0 are equlvalent to F,% k+1 =0, k> 0.

Let us pass to the problem of stability conditions. They will be obtained here according
to the scheme proposed by Leggett [12]. After making rather simple modification of the
original approach [12] we find that the stability conditions are equivalent to the single
inequality

KUH(1-g) U) > 0. an

Here, g is defined by (6), the product has an operatorial character with the average over
spherical angles related with the intermediate p-vector, and U is an arbitrary function
depending upon p = p/|p| (or an arbitrary diagonal operator). On the other hand,

aQ’
<e(p, Py = f f— o(p,P"), (18)

and we have separate inequalities (17) for the spin-direct and spin-exchange part of the
dimensionless scattering amplitude of quasiparticles. Expanding U into a series of spher-
ical functions we can see that (17) is equivalent to the positive definiteness of the Her-
mitean form determined by the matrix (¥, (1 —g) ¥;,,> (Im plays the role of a single index).
If there exists a number /, such that g; vanishes unless both /I’ are smaller than ly,
then the condition of the positive definiteness of the above Hermitean form is equivalent
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to the well-known determinant criterion. Taking into account that ¢ = go+4g and the
addition theorem for spherical functions we can write this criterion as

Det {8,:6,m(1—8)— kZ 8 Yim Wit Yom >} > 0. (19)

Here, 1,I’ and m, m’ are taken for /,1’ smaller or equal some number L, whereas |m|,
|m'| < ko < L < Iy, and the inequality is fulfilled for all L < I, and all ko < L. It should
be noted that g, and gl are suitable expansion coefficients of the dimensionless scattering
amplitude which are defined accordingly with (2). As a result of all inequalities in the form’
(19) we obtain the inequalities in the same form, but with /m belonging to an arbitrary
set of pairs of indices, provided that I'm’ goes over the same set. The inequalities (19) can
be simplified if we treat the second term as a perturbation. Assuming in this case that the
isotropic part is itself stable (i. e. that (1—g) > 0) and taking into account that Det
(E+€) = 1+Tre, we find using (11) that the single inequality

1= 12(1 +f)7! kaﬁ”(KIWz'i”Yzm> >0 (20

is equivalent to all inequalities (19), provided the summation over /m goes only over
positive terms. It is clear that the above equivalence holds only in the perturbative ap-
“proach. It should be emphasized that we have here the inequalities (19) separately for the
spin-direct and the spin-exchange parts of the scattering amplitude. If we apply the ex-
pansion (3) of the scattering amplitude (the coefficients g;i7) and take the function U
‘expressed by the series of the functions K, we find, using (4) and (17), that

o o nald) na)

pX Y, X (OO — 851 (upYuiv] > 0, 1)

150 1'=0 a=1 b=1 .
where U/® denote coefficients of the expansion of the function U into the series of Ki*. If
23 vanishes unless both /I’ are smaller than some number, then the well-known deter-
minant criterion is equivalent to (21).

Let us pass to the proof of the analogue of the Leggett inequality [12]. It is the result
of the non-conservation of the spin current, whereas the ordinary current is conserved.
After introducing a simple modification to the original approach [12] (¢f. also [13]), we
can write for cubic point groups (i.e. for Oy, O, Ty, Ty T)

2 2
p ap p N
> [< Vihy*> + 5 (Far +Fe1)] <—, 2)

where F,; and F,; denote respectively the first ( = 1) Legendre amplitudes of the isotropic
‘part of the direct and exchange effective interaction, and p = p/|p|, etc. The analogue
of the inequality (22) can be simply written also for remaining point groups if we take
info account other invariants of these groups in D' ® D'. ‘

* Let us pass now to the anisotropy induced by phonons. According to the classical
result of Migdal [14], we can consider the single-phonon exchange with very good accuracy

up to Ni m/M (M is ionic mass, but only in the scattering amplitude of quasiparticles).
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‘Hence, the scattering amplitude is the sum of the interelectron part and the electron-
-phonon part. In this case it is better to describe the system in terms of the scattering
amplitude of quasiparticles (¢f. [6]). As a result of single-phonon exchange and the cubic
invariance of the phonon spectrum we have

gph(l;, }A") = gph(i; "I;') = 8ph(|i;—1;/l, &) = 8ph,0(|ﬁ-ﬁ'|2)+
+ Y gm, #(p—P'1)K3 K@D = (_ﬁ_’?’)/lﬁ;’?lla (23)

k=2,a

where the summation over o goes over degenerate trivial cubic harmonics (they appear
for k > 6) and (p—p’)? = 2(1—pp’). Note that the limit p’ - p (important, for example,
in the sum rule) depends on the direction of the vector p—p’, provided there appear such
k > 2 that g, 54(0) # 0. On the other hand, if we take our formulae (2) and (3) for the
function g(p, p'), then should one perform the limiting transmon D' - p term by term,
we would find that there is no dependence on the dlrectlon p-—p Hence, we obtain that
if we expand even the functlon sz(q) into a series of W ™(p, p’) we have to get an infinite
series for which the limit at p’ — p cannot be found term by term. This is true provided
the above series is convergent for p £p. Mathematleally, it is rather difficult to find the
constraints on the function g(p—p’) which define it as expandable into a convergent
series of two-vector cubic invariants. The anisotropic terms in the series expansion (23)
were estimated in the paper [6]; it was found that g, 0(0) > g, 2.(0).

Now we consider the sum rule for our system, which is the result of the vanishing of
the scattering amplitude of quasiparticles for equal spms and momenta, i.e. the result
of the Pauli principle. According to [1 1] we have -

0 2 (ON\"!
lim GGt p') = (V,, "’F‘) (_) y
[p p|—’0 . a.u a["

, 72 [aN\-1 e
y [1_ Nz (6—1-:) Z (qsl(q)/vl(q»ﬂ, @4)
VA

where N denotes the density of electrons, Z the valence, N, = N/Z, whereas v,(q)
‘and &,(¢) denote, respectively, the velocity and polarnzatlon of phonons at small wave-
vector values. According to our previous conclusions, G(pt, p'1) is the sum of the inter-
electron part and the electron-phonon part. There is no reason for the first of them to depend
on the g-vector, but the second one has to depend on this vector. Let us average the
formula (24) over the dlrectxons of the vector ¢ tangent to the Fermi surface at given
point p, i.e. over all vectors g perpendicular to the vector p. The suitable formula for the
average value has the form

A dQ, .a A o
CA@»4.5 = J > S@PA@). (29

"It can be easily verified that (25) averaged over spherical angles connected with the vector p
simply gives the average of A(g) over spherical angles connected with the vector g and,
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moreover, {const);, 5 = const. Applying the above procedure to (24) we find that the
average does not change the interelectron part and, therefore we have the problem of
averaging the electron-phonon part. Taking into account that P,(0) vanishes for odd /
and is equal to (=1)7* (I=1)!1YI!! for even I, we can write

Kn 2k—1
8h) - 2( 0 C o Ck+DPaR) @6)

where we assumed, quite formally, that 0!! = (—1)!! = 1. Applying the addition theorem
for spherical functions and using (25) and (26) wc obtain

(=121 =111, (I — even)

@515 = \ 7
0 , (I — odd).

Since K%(g) are some linear combinations of the functions Yy, the functions K#(q)
fulfill the same averaging formula. Hence, ‘

< him o gu(P P55 = Eono(0)+

" n,
|p=p'|-0

0

(k=111

Gon Kb @9)

20 (-1

k=20

and we can write the sum rule using (28) and suitably averaged (24). In this case it is
rather difficult to express analytically the scattering amplitude in terms of the parameters
of the effective interaction, mainly because of the appearance of the term gph(ﬁf—ﬁ').
One can simplify the averaged formula (24) by introducing here the expression for dN/du,
the dimensionless scattering amplitude, ezc. It can be easily seen that all formulae concerning
the anisotropy induced by phonons hold for any other point group with K3, — the trivial
representation of this group. Thus, K3 can also appear for point groups other than O,
O, T, T,, T,. On the other hand, our considerations are valid only for g L p, i.e. for spherical
Fermi surfaces, if we do not place additional restrictions on p. ‘

The above considerations and the analogous ones of paper [9] constitute a necessary
step to the theory of measurable effects. Among them, the most significant effect is the
effect of spin waves in an external magnetic field [15]. Hence, the theory of spin waves
in monocrystals will be our query in the nearest future, even though they have hitherto
been measured in polycrystalline samples. On the other hand, it follows from the peculiar
properties of electron-phonon interaction that the formulation of the theory in terms of
the scattering amplitude of quasiparticles is necessary in order to solve this problem.

A preliminary version of this paper was presented at the IX Winter School of
Theoretical Physics held at Karpacz.
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