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The five-neighbours, Born-von Karman model of the lattice dynamics of bismuth is
developed. The model allows a semi-quantitative description of the experimental phonon
data to be made. Computation of a frequency spectrum for bismuth has proved the existence
of a frequency gap ~1.8-10*2 rad/s (~1.2 meV) in the spectrum, which separates the acoustic
and optical frequency bands.

Besides the model, general expressions for the elements of dynamical matrix and
for elastic constants, taking into account the space group symmetry for the bismuth structure,
are derived.

1. Introduction

Bismuth is a semi-metal, belonging to the V group of the periodic table. It crystallizes
in the trigonal system, with two atoms in the primitive cell. The structure of Bi is very
close to the simple cubic structure. Its space group R3m (D3,) is symmorphic.

Due to the valency Z = 5 of bismuth, one has to construct a large zone to confine
its 10 electrons per primitive cell [1]. There exists rather strong experimental evidence
that the conduction band elipsoids are centered at points L, whereas the valence band
elipsoids are centered at points T of the Brillouin zone [2]. A rather complete information
on the electronic properties of Bi may be found in [3]. The lattice dynamics of Bi have
been investigated by Yarnell et al. [4], Smith [5] and Macfarlane [17], mainly at 75°K,
and by Sosnowski et al. [6] at room temperatures, using the neutron inelastic, coherent
scattering method.

There are only a few theoretical treatments of the lattice dynamics for bismuth,
all within the framework of the Born-von Karman theory. One has to mention here the
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two-neighbours model of Fouret [7], the one-dimensional chain model of Yarnell ez al.
4] and the four-neighbours models used by Brovman [8] and Smith [5], who have also
carried out the group-theoretical analysis and classification of phonon modes for this
structure. These authors have obtained only a qualitative agreement with experiment,
with the exception of Yarnell ef al., whose model is, however, applicable only for the
trigonal direction phonon modes. For antimony, which has the same structure, the nine-
neighbours model has recently been proposed [18].

In the present paper we propose the model for bismuth, which is more satisfactory
than models quoted above. It is the five-neighbours Born-von Karman model. Contrary
to other models it is, in principle, consistent with all the elastic constants data. Due to
its simplicity, it can be also used within the least-squares fitting scheme with a reasonable
computation labour. On the basis of the model, the frequency spectrum for bismuth
has been computed.

Besides, we present general formulas for the elements of dynamical matrix and elastic
constants for the bismuth structure, derived assuming unlimited number of interacting
-neighbours. All information about the symmetry of Bi is already contained in these
formulas.

2. Dynamical matrix and the symmetry of bismuth

The dynamical matrix of the Born-von Karman (BK) theory of lattice vibrations may
be written as follows [9]:

. 1 1 A
i) = s 2 ) e[ 7)) o
b b’
l

/ - o o . . ; e >
b') =[+b—b', lis alattice vector and M, is the mass of atom in the position b

where 7 ( b

in the primitive cell. 45«,9(?) is a force constant, describing a coupling between two atoms
connected by the structure vector 7. The frequencies (squared) for a system are given as
eigenvalues of the dynamical matrix (1). Force constants fulfil, among others, the follow-
ing relations [9]
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Symmetry of a structure can lead to certain simplification of the general form of the
force constants matrix. Let us define the coordination sphere group for a sublattice 5
of a given structure, as the point group of all rotations (proper or improper) around the
atom at the position 5 in a primitive cell [19]. It is the subgroup of the point group for
this structure. By applying the operations of the coordination sphere group to a vector
joining a given atom with its neighbour one obtains a set of vectors connecting the atom
with all its neighbours belonging to the same coordination sphere.
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Now, if T is any symmetry operation of the space group of a structure considered,
transforming the structure vector F into 7'

Tr =7 )]
then corresponding force matrices are connected by the similarity transformation [10]:
oF) =T+ o(F) - T @

It follows, that all the force matrices of the coordination sphere atoms can be expressed
in terms of one of them. Besides, if the structure vector 7 lies on a mirror plane or along
an axis of rotation, then relation (4) introduces usually certain simplifications of the
general form of 45(7).

Fig. 1 shows the projection of the bismuth structure on the mirror plane. Full circles
and squares represent atoms situated exactly in the plane or atoms equivalent to them

Fig. 1. Projection of the bismuth structure on the mirror plane. Circles — atoms of the “first” sublattice.
Squares — atoms of the “second” sublattice. Hatched circles and squares symbolize atoms situated on the
mirror plane or equivalent ones. Open circles and squares — atoms below or above this plane

through a lattice translation. Empty circles and squares represent atoms not having this
property. Consequently, the primutive translation vector @, lies in the mirror plane,
whereas @, and a@; are oblique to it. The Cartesian, right-hand coordinate system is
chosen so, that the z-axis goes along the trigonal axis and the x-axis is perpendicular to
the mirror plane z—y.

Parameters of the Bi structure are given in Table 1I. For the simple cubic structure
there would be u = 1/4 (i. e. the squares in Fig. 1 situated exactly midway between the
corresponding pairs of circles) and « = 60° (where sin 0 = 2/,/3 - sin (@/2); it follows,
that the structure of bismuth is indeed very close to the simple cubic structure.
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The coordination sphere group for Bi is C3,, consisting of 6 operauons. They can be
generated from the following two:

RSP [ 100
2772
T(Cy) = ? _% o], Tcy=|o 10]. )
L 0 o 1l | 001

With the help of (4) one can perform in (1) the partial summations within coordination
spheres (a more detailed presentation of such a procedure may be found in the paper [11]
for hexagonal, close-packed structure). Resulting formulas for the elements of dynamical
matrix are given in the Appendix A. The sublattice I can be transferred into the sublattice IT
by performing the rotation around the binary. axis (this operation of the space group
does not belong to the coordination sphere group). It leads to the following relation

N _ ., (1
or (12) = P (12)‘ ©

It is convenient to use the following notation for the force matrices

; faf e ] AFE
¢¢ﬁ (11>= ;Cb d Py ¢up (12)= F g D . (7)
mg _E G

The standard, long wave procedure [9] leads to general expressions: for the elastic con-
stants and invariance and Huang conditions. They are given in the Appendix A.

3. Description of the model

The Bi structure has rather low symmetry as compared with other monoatomic crystal
structures. As a result the expressions for all the elastic constants and for most of the
phonon frequencies are non-linear in force constants. The low symmetry results also in
a small number of atoms in every coordination sphere. Hence the number of independ-
ent force constants can be quite high, even if the coupling with only few nearest neigh-
bours is assumed. The construction of the soluble Born-von Karman model which
allows for interactions with more than 4 nearest neighbours and which is consistent with
all the elastic constants meets with serious difficulties.

In this paper we present the model in which every atom couples with its neighbours
belonging to five coordination spheres, as shown in Table I. The matrices of interaction
with first and second coordination sphere atoms have the most general form allowed by
the symmetry. The force matrix @, for the (\/371, 0, 0) atom follows from assuming the
interaction potential of a cylindrical symmetry. Matrix @, is assumed to represent axial
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forces (derivable from radially symmetric potential of interaction). Also by assumption,
the corresponding coordination sphere consists of 6 atoms, although they are not all
equivalent with respect to the C3, group operations. The interaction with the nearest neigh-

The Model

TABLE I

Position of the representative

Force matrix

Weight factor

atom of a coordination sphere D, On
0 A;0 O
< T ) (0 B1 D]_) 1
(6u—1)o 0 DG, 2
A>,0 O
(6u—2)9 0 D,G, 2
V_T as 00
0 0 0 g
0 (173 00
( T) (0 b4. d4.) 1
4 0 di g4
0 As 0 O
( 0) (0 Asg 0) 1
6uQ 00 G5 3
in 0 9, sin 6 = z
T=a ,o0 =acosf,sin0 = — sin
sin 0, o 7 3

= —sinfcos0 -,

Q4 = 1a, b4 = Sil‘l2 0 ‘l4+t4, g4 = COS2 6 'l4+t4

bour in the direction of the trigonal axis is described by the matrix @4, which is only

symmetry restricted.

We have also tried to construct models including interactions with the fifth neighbours
(coordination sphere of the (0, —27, (6u —1)g) atom) and have found that it increases
considerably the mathematical complexity of the problem, but gives no great improve-
ment in the quality of the final result. At the same time, it was crucial, for the purpose of
fitting the calculated and experimental phonon dispersion curves for the direction I'—T
(Fig. 2), to include in the model interaction with the (0,0, 6up) atom. The model presented
in Table 1 is probably the most general one, for which one can determine the force con-

stants with no more difficulties than solving the quadratic equations.
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The elastic constants and certain phonon frequencies for the points I', T, L and X of
the Brillouin zone have been expressed in terms of the force constants of the model.
Besides, the rotational invariance condition and the Huang conditions have been written,

z.
F

Fig. 2. Jones zone, Brillouin zone and the irreducible part of the Brillouin zone for the bismuth structure

as it is shown in the Appendix B (Eqs (B13), (B14), (B15). These are 19 equations, from
which one has to find 15 unknown force constants of the model. We have solved this
problem in two ways:

1. Algebraic approach. Equations (B16), (B17), (B18) and (B19) have been omitted and
the system of remaining 15 equations solved. It means, that the algebraic approach (AA)

TABLE 11
Parameters of the Bi structure at 298°K [15]
a = 47458 A
o« = 57°13°48"”
u = 0.23389
TABLE 111

Elastic constants of Bi at room temperature [16]

[10%° dyn - cm—2]

Ci1 = 63.7 iO.2

Ci2 24.9 '_"02

Ciz = 247 +0.2

Cc1a = —7.174£0.04 1

C33 = 38.2 i0.2

caqg = 11.23+0.04

Cee = 19.41 +0.06

! For our choice of the system of coordinates c;4 is negative.
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gives the solution consistent with all elastic constants and with phonon frequencies at
points I" and T. The occurrence of nonlinear equations in the system (B1)~(B15) leads to 4
independent and formally equivalent sets of force constants. However, for only one of them
(Table IV) the acoustic and optical phonon branches for directions I'—-L and I'—X do
not cross, in accordance with experimental data. This set of force constants has been
accepted. The corresponding, calculated phonon dispersion curves are shown in Fig. 3
(dashed lines). We notice the large discrepancy between experimental and calculated
frequencies and, in particular, the occurrence of imaginary frequencies in the vicinity of
point X.

2. The least squares fitting (LSF). The sum of squares of the differences between the
left (e;) and ringht (;) sides of equations (B1)-(B19) (Appendix B) was formed

2
7 = Z (e; —2ti) ®)
€

i

and minimalized with respect to the force constants. In (8) the i-summation goes over
equations (B1)~(B19). To assure the physical consistency of the model, the rotational in-
variance condition and Huang conditions (Eqs (B13), (B14) and (B15)) have been satisfied
exactly. Also, as the difficulties in achieving the fit to the experimental data are connected
mainly with the @,, and &,, force constants, certain equations involving only the &,
force constants have been chosen to be satisfied exactly (Eqs (B5), (B7),(B11)and (B12)).In the
process of minimalization Z changed from 1.1. to 0.3. The resulting set of force constants,
corresponding to the AA set as the starting data, is given in Table IV. Fig. 3 shows the
phonon dispersion curves calculated for the LSF set of force constants (point-dash
lines). The fit between calculated and experimental curves is as a whole much better,
than in the AA case. However, the values of elastic constants and phonon frequencies at
I' and T have been somewhat changed in the process of minimalization.

4. Phonon dispersion’ curves for bismuth

We show in Fig. 3 the room temperature experimental phonon curves, determined
for directions '—T, I'—=L, I'—=X and '-N—A'—X by Sosnowski et al. [6], and for
direction I'—T also by Yarnell ez al. [4] and the 75°K data of Macfarlane[17]for direction
I'— K—X. There exist no experimental, room temperature data for this direction. How-
ever, for most of the phonons investigated in Bi, the room temperature phonon frequencies
differ from those corresponding to 75°K by no more than 1% [4]. For this reason we treat
the 75°K data as representative, within experimental error, for room temperatures, tco.

For all the directions investigated the acoustic branches are well separated from
optical ones. The acoustic branches for directions I'— X show large dispersion. The optical
branches are relatively flat. It seems, that the highest frequency for bismuth corresponds
to the branch A* (~ 2.1 - 10*3 rad/s). As a whole, phonon dispersion curves in Bi resemble
the curves for some ionic crystals [12].

Fig. 3 presents also calculated phonon dispersion curves. The AA curves evidently
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Fig. 3. Phonon dispersion curves for% bismuth (a, b, ¢). Full Iines — haf,nd drawn through experimental point.

Open circles — room temperature data of Sosnowski et al. [6]. Bla}ck circles — liquid nitrogen data of

Yarnell et al. [4] and Macfarlane [17]. Dashed lines — phonon dispersion curves calculated basing on the

AA force constants. Point-dash lines (—.—.) — the curves calculated with the force constants of the
| LSF calculation 'scheme '

cannot be accepted. The LSF curves show a semi-qualitativé agreement with experimental
data. The acoustic and optical frequency bands have proper vx}idths, they are well separated.
Optical branches are rather flat. Acoustic branches for the directions I'—X indeed show
a large dispersion and two of the phonon frequencies at X (w(X?) is one of them) are very
low. '

However, the detailed behaviour of the experimental phonon curves, in particular
the ia’éoustic curves along directions '—X and I'—K—X and optical branches for the
direction I'—L, is reproduced rather roughly. A better fit cannot be probably achieved
within such a simple model.

5. Frequency spectrum of bismuth

‘The frequency spectrum was :computed for the LSF case, using the perturbation
sampling method [13]. The secular equation for the dynamical matrix was solved for
a mesh of about 100 points distributed uniformly within irreducible part of the Brillouin
zone (Fig. 2). The obtained eigenvectors were used to calculate approximate eigenfre-.
quencies at 27 points distributed uniformly about every mesh point. Every frequency was
given a weight, following from the symmetry considerations (1 for the internal points, less
than 1 for the boundaries of the irreducible part of BZ, ex. 1/12 for point T). The
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frequencies were then sorted into the frequency intervals 10'2 rad/s. The frequency
spectrum was set up by summing all the weights in every frequency interval. The
GIER computer at INR Swierk was used for computations.

The calculated frequency spectrum is shown in Fig. 4. No attempt was made to use
a denser mesh in order to obtain a fine structure of the spectrum, as, because of the short-

glw)

R S S e (1 o DN O | -I L1
1.0 3 20
w(10"rad/s)
Fig. 4. The calculated phonon frequency spectrum for bismuth, based on the LSF force constants

comings of the model used, only main features of the spectrum could be considered to be
reliable.

There is a gap in the calculated phonon spectrum of Bi, which separates the acoustic
and optical bands of frequencies. It should be noted that the frequency distribution
function, determined experimentally by Kotov et al. [14] shows indeed very low values
in the corresponding region of frequencies.

It follows from the experiment and from the present calculations, that the frequency
gap in bismuth ranges between the highest acoustic frequency for the direction I'—L
and the optical frequency w(I'*). Experimental figure for the gap’s width at room temper-
ature is w(I'*)—w(L') ~ 1.8 - 10'2 rad/s (~ 1.2 meV). It is the first case, that the energy
gap is found in the phonon spectrum of a monoatomic crystal.
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6. Discussion

The AA version of the model, in spite of its formal advantages over the earlier models
[5, 8] (the possibility of fitting simultaneously the phonon frequencies at I and T, and the
elastic constants cas, C44) is unable to describe the experimental situation. Evidently, the
atomic interactions are oversimplified in it. In fact, the fourier analysis of the trace of the
dynamical matrix suggests, that at least nine nearest coordination spheres of neighbours
should be incorporated into the model, to account for the observed shapes of phonon
curves [17]. This would complicate the mathematics of the problem enormously.

For this reason, and for the interpolation purposes, we have made an effort to im-
prove the description of the experimental situation within the five neighbours model.
The least squares fitting allowed to achieve the semi-quantitative agreement with the ex-
periment, so that the main features of experimental result are reproduced within the LSF
version of the model.

There is a very strong coupling with the nearest neighbours in bismuth (Tr @, >Tr @,).
The relative smallness of A, if treated in terms of the ion-ion interaction potential V(r)
(depending on the distance only, so A~ Vrl,— 1) would mean, that a distance be-

TABLE 1V

Five-neighbours model of lattice dynamics for bismuth. Force constants [dyn cm—1]

The AA set of force constants

(Dl qjg ¢3 ) l ¢4 q;G
A 9.4 -10° 1.16 - 10* —17.0 - 10° —3.5-10% 3-10%
B —3.81 -10* —4.4 -10° —2.8-103 —3.0-10% 3102
D —3.34 - 10* —9.9 103 0 —6+10? 0
G —1.81 - 10* —4.1 103 —1.1-10° —2.5-103 52-10°
The LSF set of force constants
D, D, D, D, D¢
A 2.3-10° 52-10° —5.0-103 —2.6 - 103 4.5-10°%
B —2.94 - 10* —2.0 - 103 —3-10? —2.6 - 10° 4.5-10%
D —1.93 - 10* —6.4 - 103 0 1-10?% 0
G —1.81 - 10* —4.1-103 1.6 - 103 —-2.5-10% 52103

tween nearest neighbours is close to the position of the minimum of ¥(r). One cannot,
however, expect, that interactions in bismuth have such a simple form. Evident domina-
tion of interactions with nearest neighbours suggests anisotropy of interactions and perhaps
their directional, covalent character.

Both Ag and Gg are positive (Table IV). Perhaps one should tie this fact with the easy
cleavage plane occurring in Bi, which is perpendicular to the trigonal axis.

The present model (as well as the earlier ones [5, 8]) is unable to reproduce the complic-
ated behaviour of experimental phonon curves in the vicinity of point X. Presumably the
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low values of acoustic frequencies in this region reflect a certain instability tendency of
this structure, which cannot be accounted for by such a simple model.

Although the deviation of the structure of bismuth from the simple cubic is rather
small it leads to a very large modification of the phonon spectrum, including the occurrence
of the energy gap. In terms of force constants, the splitting between acoustic and optical
frequencies at points T and L appears because diagonal force constants, describing the
coupling with first and second nearest neighbours, differ (Table IV). Assuming for a
while &6 =0, one finds, that the splitting disappears, if #; = &, (see Appendix B, Eqs
(B10) and (B12)), which occurs just in the case of undeformed, simple cubic structure.
Sphttmg at point X exists for the cubic structure, too.

It is interesting to compare the temperature dependence of higher phonon frequencies
with the temperature dependence of the sound velocities in bismuth. In the temperature
range 75°K—300°K the higher photon frequencies (determined by neutron scattering)
change by ~1% [4], whereas the sound velocities (determined by the ultrasomc method)
change by about 5% [16] This would suggest the temperature change of the long-range
screening, possibly due to the temperature dependence of the energy spectrum of conductlon
electrons, resulting from interaction with phonons (i.e. the failure of the adiabatic approxi-
mation), or the temperature dependence of the bands population.

The occurence of the gap in the phonon spectrum of bismuth does not influence
its thermodynamic properties drastically (phonons are bosons). Certain effects can, never-.
theless, be expected, such as nonmonotonic behaviour of the temperature derivative of
the lattice specific heat vs temperature.

APPENDIX A

Elements of dynamical matrix for the structure of bismuth

- 0 .
MD,, (ﬁ) =&y <11) +2 Z 0n {an cos (x)el(zy) +

-+ % (a,+3b,+ \/3 (f,+k,) cos (xy)ei(zxy) +

+ % (@ +3b,— /3 (f,+,) cos (yx)e' ™}

- (1kl) = P2 (11) +2 Z 2a{bn cos (x)'™ +

+ 1 (3a,+b,— /3 (f,+k,)) cos (xy)e'™? +

+ % (Ba,+b,+ /3 (f, +k)) cos (yx)d@}

e 22 (1kl> = % <101) 2 Z 0n8n{COS (X)) +-cos (xy)e'® +cos (yx)e'?}



MD,, (lkl) = 2i Z 0u{ —f, sin (x)e"™ +

+ 4 (V3 (— a,+b,) +f,—3k,) sin (xy)e’ ™™ +
+ %: \/3 (an - bn) +fn - 3kn) sin (yx)ei(zyx)}

MD,, < lkl> = —2i Z o.{e, sin (x)e"™ +

+ % (en + \/3 d,,) sin (xy)ei(sz’)_l_
+ % (e,, — \/§ d”) sin (yx)ei(zyx)}

MD,, <lkl> =2 Z 04{d, cos (x)e'™ +

+ £ (/3 e,—d,) cos (xy)e'™ —
3B ey tdy) cos ()

AN
2 (11) =75 1)

(x) = 27thx,, (ZJ’) = - 2n(kyyn + kzzn)
(xy) = w6+ 3y (2xy) = =2n(ky(y/3 Xy = yn)[2+K,2,)
(yx) = nkx(x_n - \/§ yn) (Zyx) = —27'[( - ky(\/§ Xn +yn)/2 +kzzn)

notation:

The elements D,z (1]€2> can be derived from D,4 <1kl) by:

1. Omitting the first terms — &,, (10 1), on the right, in D,, <1kl)

2. Changing to capital letters for the force constants and position coordinates, and
simultaneously substituting k£ by F, / by E and m by D.

In the above formulas one takes into account only one position vector for every
coordination sphere, i.e.(X,, V,, z,) or (Xy, Yy, Zy).

¢, = 1/6 - number of atoms in the n-th coordination sphere.

The self-force matrix elements have the following form

0 0
Dy (11> = @,, <11> = -3 Z ou(a,+b,)—3 Z on(Ay +By)
n N
o ‘
D33 (11) = —6 z 0n8n—6 Z oGy
n N
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Elastic constants for the structure of bismuth

The long-wave procedure allows one to express elastic constants in terms of force
constants. These are rather cumbersome expressions for the bismuth structure. It is con-
venient to express first the elastic constants by the “‘square and round brackets” [9]:

Ci: = [11, 1114711, 11)

Ciz = 2[12, 12]—-[22, 11]4(11, 22)

Cis = 213, 13]—-[33, 11]+(11, 33)
e = 2[12,13]—[23, 11]-(11, 23)

Css = [33,331+(33, 33)

Cia = [22,33]4+(23,23)

[11,11] = — ‘% {2 eula,(3x7 +y2) +b,(xz +3y7)] +CL}
(11,10 = 2 [{S e.L%Us +k) 42,0 = )] +OLY/E oa(Ay +B)+
+2{Z Qn(lnxn +mnyn) + CL}Z/Z QNGN]
[22,11] = = 2 (F elan(d +352)+ b3t +32]+CL)
(11,22) = 213; 203 e[ L%, +m,y,]+CL}?[Y oxGy—
- {Z Qn[xn(fn + kn) +yn(an_ b”)}Z/Z QN(AN +BN):I
[13,13] = — vi {3 ouzalesXn+d,y,] +CL}
[33, '11] [ 5_ D 0nga[ X2 +y2] +CL}
(11,39) = > { el +m] +CL} {F 00+ CLYE 4G

[12,13] = ~ - {3 L5y +k) 3= b)] +CL}
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[23,11] = = — {¥ el2exuy,+d, (e~ yD] +CL}

(11, 23) b 53; {Z Qn[xn(fn+kn) +yn(an_ bn)]+

+ CL} {Z ann(an + bn) + CL}/Z QN(AN +BN)

6 N
[33’ 33] = - U— {Z Qngnzi% + Z QNGNZ§}

6
(333 33) = 17 {Z Qngnzn'l' Z QNGNZN}Z/Z @NGN
3 2
[22,33] = — — {Z 0.zn(a,+b,)+CL}

(23 23) = {Z 0nzn(a, +b,,)+CL}’/Z QN(AN+BN>

For brev1ty we use the symbol CL, which means: the same, but written in capital letters
(with an obvious substitution, k > F, | » E, m — D), ex. {Y 0./, x,+CL} means
{Zenl X +ZQNENXN}

There exist additional conditions on the force constants, namely:
The condition expressing the rotational invariance of the crystal energy
- Xenzn(ay+b) +CL = ¥ o(e,x, +d,,) +CL.
The Huang conditions for vanishing anisotropic stresses [9]
2. ezl % (fu+ k) +y,(a,— b,)] +CL =
= ¥, ou[m,(x3 — y2) +2L,x,y,] + CL
Y. 0,:22(a,+b)+CL = ¥ 0,8,(x? +?) +CL
2. eaZal%u(fu+Kn) +.(a,— b)] +CL =
=Y ea[du(xz = y2) +26,%,y,] +CL
APPENDIX B

Elastic constants and some phoﬂon Jfrequencies expressed in terms of force constants of
the model
Cii=— 2 \/3 [A;+3B,+A,+3B,+18a;+6b, +2a4 +6b,] +

3 [U? U?
+ =22t
4v,| Sup Se.

(B1)
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1 3 U2
Cll +C12 = \/ [Al Bl +A2 B2—6a3 +6b3 +2a4—'2b4] + - (Bz)
v, Sg
1
C13 B 73:"-9- [Gl +G2 +6g3 +2g4"'2 Ctg 0((6“— l)Dl +(2—'6u)D2—2d4)] +
3 U,U,
o, Se (B3)
1
3 U,U,
ZOa SAB (B4)
2 2 6 U3
Cy3 = — \/_ ctg O[(6u — 1)2G, +(2—6u)*G, +12u*G, +2g,]+ — —S~ (B5)
G
ct
Cus = \/i [(61—1)*(A; +B;) +Q2—6u)2(4; +By) +24u>Ag +2(as +b,)] +
L3 3 Ul B
o 5 (B6)
where
Uy = 2 [6u—1) (4; +B)~(@2— 6u) (43 +B;)+4ud]
T
U, = 2 [4,—B,—A,+B,]
U, = % [(6u—1)G; —(2—6u)G, +2uG;]
S¢ = 3 (G1+Gy)+ £ G
Sap =31 (A;+B; +4,+By)+ 3 4
@=a-cosf, 1 =a-sinb, v, =3,/3 4> sin?6 - cos 0/2.
Ay =g, by =sin? 0 - I, +1t,, g4 =cos?> 0 l,4t,,dy = —sin@-cos0-1,
Mo*(I''y = —6(G,+G,)—2Gs (B7)
Mao*X(I'®) = —3(4,+B, +A2+B2);2A6 (B8)
Mo*(T?) = —3(A,+B,)—2A46—6(as+bs) (B9)
M[oX(T®) - o*(T?)] = —3(4;+B,)+3(4,-+By)+246 (B10)

MoX(TY) = —6G,—2Gs—12g, (B11)
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M[oX(T?)—0*(TY)] = —6G;+6G,+2Ge (B12)

(6u—1)2(A; +By)+(2—61)*(Ay+Bo) +24u” As+2(as +bs) — 187 0(G1+G2+6g3+284) = 0
(B13)

(6u—1)(4;+B,)—(2—6u)(A,+Bs)+4ude— tg 0D, —Dy) = 0 (B14)

(6u—1)(Ay —B;)+Q2—6u)(A, — B;) —2(as—ba)+ tg 0 (Dy+D+2dy) = 0 (BLYS)
MoA(X?) = —2A,+A,+Ae+as+as)—6(bs-+bs) (B16)

Mw*(X3) = — Ay —3B,— Ay~ 3B, —2a3—6bs —2a,— 6b,. (B17)

We also used two equations for the frequencies of acoustic modes with polarization vectors
in the mirror plane, at the point L of the Brillouin zone. For the upper (L) and lower (L*)
frequencies one has:

Mo*(L") = % (D3, +D3,— (D3, —D3,)* +4(D35)H%) (B18)

MoX(I) = } (D5, +D53— (D32 —D33)* +4(D33)")) (B19)

L : L
.
Daﬁ = Dzﬂ (11> iDaﬂ <12>

D22 (L> = — %(Al +B1 +A2 +B2)—A6—6a3—2b3—4b4

where:

. 2) =1 (34, — B, —34,+B,+24,)

11) = —3(G; +G,)—Gs—8g3—48s

L
D33 (12) = GI—GZ +G6

L
.D23 <11> = '—4d4

L
D,y ( 12) = —2D, +2D,.

The above formulas follow from the factorization of dynamical matrix at point L
o, 1/(31:),;1/(6Q)), (classification according to [2]).

To solve the system of equations in the algebraic approach A4, one has to combine
first Eqs (BS), (BY), (B10) to obtain the quadratic equation for 4,+B, from (B6), and sym-
metrically, Eqs (B7), (B11), (B12), to obtain from (B5) the quadratic equation for Ge.
Now, after calculating U, and Us, one obtains the linearized (B3). Proceeding in this way,
one finds 4 equivalent solutions consisting each of 15 force constants of the model.
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