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A brief survey is made of the various quantum mechanical models hitherto developed
for calculating the atomic and molecular polarizabilities and assessing the extent to which
the polarizability could be a useful criterion for testing the utility of the wave functions
chosen. The delta-function potential model and its valuable applications in obtaining the
necessary derivations by using the variational method and delta-function electronic wave
functions are expounded in the case of the necessary calculations of the bond region electron
contributions and the nonbond region electron contributions to the bond parallel component
of the polarizability, the bond perpendicular component of the polarizability, and the
average or mean molecular polarizability of both diatomic and polyatomic molecules. The
Lewis-Langmuir octet rule, modified by Linnett as a double-quartet of electrons, has been
employed for such investigations. Atomic, bond and molecular polarizabilities have been
computed for many polyatomic molecules having six, seven and eight residual atomic
polarizability degrees of freedom. The available experimental values of molecular polariz-
abilities for many of the molecules studied here are in good agreement with those calculated
on the basis of the delta-function potential model. The results are discussed in relation to the
nature of various characteristic bonds, distribution of the electrons, and the configurations
of molecular systems.

1. Introduction

One of the fundamental electrical properties of a molecular system is molecular
polarizability. It cannot be measured directly, but can be deduced from the measurement
of some bulk macroscopic properties, such as dielectric constant, dipole moment and
index of refraction, by employing such well-known relations as the Clausius-Mossotti
equation, the Langevin-Debye equation or the Lorentz-Lorenz equation. This deduction
is necessarily based upon an assumption regarding the nature of the symmetry of the
molecular system and the extent of each local molecular field. An average molecular
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polarizability may, however, be obtained by averaging the three directional diagonal
components of the polarizability tensor, i. e., if

oy Oy | then oy = (0, +ay, +0,,)/3

where a, is the average or mean molecular polarizability. On the basis of the quantum
mechanical models, several investigations were undertaken in many ways to compute the
atomic and molecular polarizabilities for many ions, atoms and simple diatomic molecules
in order to test the utility of the wave functions adopted. In spite of the progressive de-
velopments in adopting various potential models, such investigations were limited to
simple atoms, ions and diatomic molecules, and did not involve triatomic or any simple
polyatomic molecules. Polarizabilities for the helium atom and lithium ion were calculated
by Hasse [1] by the use of a variational method involving several types of ground state as
well as perturbed state wave functions in terms of the perturbing potential. Hirschfelder [2]
computed the polarizabilities of molecular hydrogen and the diatomic hydrogen ion by
applying the variational method of Hasse [1] and Hylleraas [3] upon the eigenfunctions
proposed by Rosen [4] and Wang [5]. But the calculated values of Hirschfelder [2]
were not in satisfactory agreement with those of Mrowka [6] and Steensholt [7].
It was found that the Kirkwood formula [8] was applicable to the diatomic hydrogen
ion and the polarizabilities were calculated for many internuclear separations by using
the eigenfunctions developed by Guillemin and Zener [9]. Van Vleck [10] and Atanasoff
[11] pointed out from the results of their investigations that the Hylleraas method [3]
was not strictly applicable to approximate eigenfunctions and might yield results either
too small or too large. The approach of Buckingham [12], based on the variational
method of Kirkwood [8] and involving heavier atoms, led to complex self-consistent
field wave functions in his calculations of atomic polarizabilities for Ne, Nat, Cl-, A,
K+, Kr and Cs*. The polarizabilities for the HF and H, molecules for six different unper-
turbed wave functions were calculated by Bell and Long [13], but their results were insen-
sitive to the wave functions chosen. Abbott and Bolton [14] studied the H3, H, and N,
molecules, and used the polarizability as a criterion for determining the molecular wave
function of a system by a known self-consistent method. Later, Kolker and Karplus [15]
calculated the electric polarizability tensor & with ab initio wave functions for a series of
first row diatomic molecules, such as H,, Li,, N,, LiH, KF and CO. Kolos and Wolnie-
wicz [16] furthered such studies with many modifications. Hence, it is clear from these
methods that the potential models developed so far were limited to simple atoms, ions
and diatomic molecules, and were rather not extended to the computations of polariza-
bilities even for simple triatomic molecules.

In studies of the properties of chemical bonds, a delta-function potential model was
first used by Rudenberg and his associates [17, 18]. Later, Frost [19] applied a delta-
function model of chemical binding in calculations of energies of conjugated hydrocarbons
with the introduction of a branching condition, and further investigations on this aspect
were made by Lippincott [20] with a semi-empirical delta-function potential model. On
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the basis of this semi-empirical delta-function potential model, Lippincott and Dayhoff
[21] predicted the bond dissociation energies, vibrational frequencies, anharmonicities
and equilibrium internuclear distances for various diatomic molecules and bonds of poly-
atomic systems, and their calculated values were in good agreement with the available
experimental results. Lippincott and Stutman [22] recently applied the same semi-empi-
rical delta-function potential model in calculations of bond and molecular polarizabilities
for various diatomic and polyatomic molecules. Such studies were limited to only
molecules consisting of elements from and beyond the IV A4-group of the periodic table,
but not from the 14, 114, 1114, VIII or any of the B-groups of the periodic table. Further-
more, Lippincott and Stutman [22] assumed that in a polyatomic molecule each bond is
a pure diatomic molecule and the contributions of all the bonds in the entire molecular
system can be summed up to obtain the average or mean molecular polarizability. As an
example, the C = C bond in ethylene cannot be considered as a pure diatomic molecule,
because the delta-function strength of the carbon atom in ethylene is smaller than in a
pure diatomic molecule. The main reason for this is that there is a greater distribution of
polarizability along the bonds from the carbon atom of ethylene than from the carbon
atom of a pure diatomic molecule. Though the assumption that every bond of a poly-
atomic molecule is a pure diatomic molecule will not lead to any considerable deviation
from the true value of mean or average molecular polarizability of a simple polyatomic
molecule, it will certainly do so in the case of heavier and highly complex molecules. Hence,
the goal here is to compute the delta-function strengths, atomic polarizabilities, contribu-
tions of the nonbond region electrons, and mean or average molecular polarizabilities of
a few polyatomic molecules having their elements from both the 4- and B-groups of the
periodic table. Moreover, the values of the present study are compared with available
experimental ones in order to show the extent to which the polarizability could be a useful
criterion of testing the utility of the wave functions chosen. This comparison also de-
monstrates when the delta-function potential model, among the various quantum mechan-
ical model developed so far, would be the most useful one for calculating the atomic,
bond (parallel and perpendicular) polarizabilities, contributions of the nonbond region
electrons, and mean or average molecular polarizabilities of both diatomic and polyatomic
molecules having their elements from any group of the periodic table.

2. Delta-function potential model

The stationary state Schrodinger wave equation may be used to determine all mea-
surable properties of a particle of mass m moving in a potential field V(x, y, z). It reads
h2
— = Ay +V(x, y, 2)p = Ey €)
2m

in which the different values of the mass and the potential alone distinguish one system
from another. A model of a system, even of the most complex nature, is an idealized picture
of the behaviour of the potential energy function V(x,y, z). The free electron and the
“particle-in-a-box” models would be helpful for molecular electronic systems. The free
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electron treatment developed by many investigators [23-26] found considerable applica-
tion in helping to understand electronic excitation energies in conjugated n-electron sys-
tems, but failed to generate an acceptable interatomic potential energy function. The
more refined model of the electron in finite square potential wells was used by Bayliss.
[27, 28] for conjugated polyenes, but it could not allow for any change of internuclear
distance. Nor was the structure of his model amenable to the investigation of saturated
compounds. The delta-function potential model can be explained by considering an
electron in a diatomic molecule moving in a potential field consisting of two finite potential
wells, one about each nucleus; the width of each potential well is allowed to shrink and
the height is at the same time allowed to increase without limit in such a way that the area
remains finite and constant. The potential about each nucleus then becomes a delta-function.
The integral of the potential over all space, however, is finite and equal to a parameter,
called the “delta-function strength” or ‘reduced electronegativity”, and is analogous to
the ““effective nuclear charge” of Slater. The major advantage of a delta-function potential
model lies in its one-diemensional nature. Each bond is considered to be a separate one-
dimensional entity, and since the potential has a non-zero value at only two points along
any given bond, the problems of calculation become trivial from the following:

The potential energy for the n-electron problem is considered to be the sum of the
single delta-function potentials, each having the following form for a diatomic system:

V = —[4:86(x—}a)+4,80(x+3a)] @
where x — is the coordinate of motion along the internuclear axis, @ — the delta-function
spacing, 4, and 4,—the delta-function strengths or reduced electronegativities for the

nuclei 1 and 2, respectively, g—the unit delta-function strength (the value for the hydrogen
atom), and 8(x) a delta-function whose properties are described by the following:

é(x) = 0, when x # 0

o(x) = oo, when x =0 3)
| 8(x)dx = 1.

Thus, the potential is zero everywhere except at the delta-function positions where it is

infinite in such a way that

A8 _s d(x— % a)dx = A;g ©)
and ©
Ayg | O(x+F a)dx = 4,g. ©)

The delta-function strength obtainable from separated atom energies E; is defined as
A = (—2E;)*. This can be obtained either from the first ionization potential o1 from the
solution of the atomic problem using the delta-function potential model.

The solution of the Schrédinger equation for the molecular problem yields separate
wave functions for the bonds; correspondingly, the i-th bond wave function has the form

y; = N[exp (—cilx;+ S al)texp (—cilx;— 7 al)] (6)
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where
N = [Qlc){1+ exp (—c@)t2aexp (—ca)}]+ and ¢ = (—2E)%.

The delta-function branching conditions outlined by Frost [19] can then be applied to
obtain the following expression for the homonuclear case:

¢; = Ag[lztexp (—ca)] Q]

where the plus and minus signs correspond to the attractive and repulsive states, respecti-
'vely. By combining the equations ¢; = (—2E)?, 4 = (—2E;))* and Ag = (—2E)*, one
may obtain the following relation
lim ¢; = Ag = (—2E)*. ®)
a—> oo a= oo )
The problem of obtaining c; for each individual electron is simplified by properly generating
a “‘super” one-electron situation. Following this, a resultant ¢ written as cg may be obtained
and assumed to account for all electrons in the system. One may, then, have cgx = A(nN)*
for the homonuclear case, where A is the one-electron delta-function strength for the
atom, » the principal quantum number of the valence shell, and N the number of electrons
making the contributions to the binding or two times the column number in the periodic
table. One may take

CRiz = (chch)% = nyn,N{Ny(4,4,)* ®

for the heteronuclear case by forming a geometric mean molecular delta-function strength
Cry, and solve the wave equation as if the molecule were homonuclear.

Two kinds of delta-function strengths have been considered in the present study.
The delta-function strenght for an atom having a bonding with another is different from
that of the same having two or more bondings with other atoms, and this is due to the

- difference in the electronic distributions. As an example, the delta-function strength for
the sulfur atom in an SO molecule is different from that of the same in SO, and SO,
molecules, whereas the delta-function strength for the oxygen atom is considered to be
the same in all these molecules. The delta-function strength of an atom in a bond of
a diatomic molecule and that of an atom in a bond of polyatomic molecule have been,
in line with earlier studies [21], obtained from the following:

A = [x/(2.6n—1.7p—0.8D+3.0F)]* (10)
(4*)? = A2(n-3)/(n-1) (11)

Here x is the electronegativity on Pauling’s scale [29], # the principal quantum number,
pis 1 for an atom with p-electrons in the valence shell and 0 for an atom with no p-electrons
in the valence shell, D the total number of completed p and d shells in the atom, F the
total number of completed f shells in the atom, A the delta-function strength for an atom
in the bond of a diatomic molecule, and 4* the delta-function strength for an atom in
a bond of a polyatomic molecule.
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3. Atomic, bond and molecular polarizabilities

On the basis of the variational treatment [30] first introduced by Hylleraas [3] and
Hasse [1], one may generate the polarizability component oy, in the following form:

4nA
e 7”0_ [(Gr1 = <) = (= 1) (e = <x3) (e, = GO T2 (12)

where x; is the coordinate-of any one of n equivalence classes of electrons which falls in
the first equivalence class, {x) the average coordinate of any one of these electrons, 4 the
reduced electronegativity of the nucleus, and a, the radius of the first Bohr orbit of
the hydrogen atom. The above equation (12) can be further simplified if the following
assumptions, which are implicit in the choice of a delta-function potential model, are
made:

The first assumption is that {x) = 0 for a homonuclear diatomic molecule, because
of the symmetrical placement of the delta-function potentials.

The second assumption is that {(x; —<{x>)(x,—<{x))> = 0, because the delta-function
potential model allows no electron correlation.

The third assumption is that x = X; =X, = X3 = X4 = ..cvvenns , because all the
bonding electrons are considered to be perfectly equivalent.

On the basis of these assumptions the above equation (12) can be reduced to

4nA
Oy = — ((xD))? (13)
o
or equivalently
44
Oy = —— E «xP)*. (14)
ao

In order to obtain the expectation values of {x2) for atoms, every atom is assumed -
to be perfectly isotropic, and hence, one has the following:

(x?y =) = (2% = 3. S

On the basis of the delta-function potential model located at the nucleus, one has
in polar coordinates:

p = Nexp (—A4r). (16)
On' normalization,
N = A4"217% a7n
Thus,
7 2w o
&2y = [ | [ or’y'r? sin 0d0dedr = 3[A° (18)
00 0
and hence,

(2> = 1/42% (19)
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Solving for a negative value of E yields the following expression:

52,(’0 A2
W:—TQ‘/;:E«/).” (20)

Hence, 4 = (—2E)* is the same delta-function strength of the atom obtainable either
from the first ionization potential or from the reduced electronegativities of the elements.
Finally, the polarizability along the x axis of an atom is given as

Uy = 4adA’. 21

-1
2

This equation gives the polarizability component of an atom in any desired direction.

Considering a diatomic molecule which has an axis of symmetry, the mean molecular
polarizability can be written as &, = (1 /3)(06” +2a, ), where o is the bond parallel compon-
entand «; the bond perpendicular component of the polarizability. If the axis is considered
to be the internuclear axis for a homonuclear diatomic molecule with the zero point at
the center of the electronic charge distribution, then {x) becomes zero. The bond parallel
component can be obtained from the contribution of two sources, namely, the bond
region electrons, and nonbond region electrons. The contribution to the parallel com-
ponent of the polarizability by the bond region electrons is calculated by using a linear
combination of atomic delta-function wave functions representing the two nuclei involved
in the bond, i. e., the expectation value of the electronic position squared {x2) along
the bond axis is calculated, and this is used to obtain the bond parallel component of the
polarizability o, from the following:

4nA
iy = —— (G2 @)

where # is the bond order and the other quantities are well known. The evaluation of the
expectation value {x*) for a one-electron homonuclear diatomic molecule using the delta-
-function wave functions was easily carried out earlier [22] and is given as
R* 1
2
X)) =—4+ — 23

=T+ 5 @3)
where R is the internuclear distance at the equilibrium configuration which is here allowed
to equal the delta-function spacing, a. If one considers a heteronuclear diatomic molecule,
the equations (22) and (23) can be written as

4ndq,

Ay = (<X2>)2 (24
Qo
R? 1

Ry ®

where A, is the root mean-square delta-function strength of the nuclei 1, and 2, respectiv-
ely, and cg,, = (chch)’i' = nyn,NyNo(4,4,)*. In case the bond is of the hetero-
nuclear type, the bond parallel component of the polarizability must be corrected to allow
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for a charge density not in the bond region by virtue of the polarity induced by the electro-
negativity difference of the atoms. Hence, the charge density in the bond region should,
then, be related to the percent covalent character believed to exist in the form

o = exp [—(1/4)(x; —x2)°] - (20

where x; and x, are the electronegativities of the atoms 1 and 2, respectively, on Pauling’s
scale [29]. Thus, the bond parallel component of the polarizability, after introducing
the polarity correction, is given as

(Z“p = G'd”b. (27)

The contribution of the nonbond region electrons to the bond parallel component
of the polarizability o, is calculated from the remaining valence electrons not involved
in the bonding. The basis for such calculations is the Lewis-Langmuir octet rule [31,32]
modified by Linnett [33] as a double-quartet of electrons. On the basis of the Linnett
model [33], the most stable electronic configurations in the ground state for nitrous
oxide, hydrogen cyanide, nitric acid, and aluminum trichloride dimer are given in Fig. 1,
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Fxg 1. Electronic configurations in the ground state for (a) nitrous oxide, (b) hydrogen cyanide, and. (©)
aluminum trichloride dimer
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where the “dots” represent the electrons with spin quantum number of + % and the “crosses™
the electrons with spin quantum number of —3%, or vice versa. The contribution of the
nonbond region electrons to the bond parallel component of the polarizability o, for
nitrous oxide can be written as

oyjn = (4/S)an+(4/6)t0 (28)

where oy and oo are the atomic polarizabilities of nitrogen and oxygen, respectively.
Hence, the general expression for the contribution of the nonbond region electrons to
the bond parallel component of the polarizability a, is written as

O = Zfifxi (29

where f; is the fraction of the valence electrons in the ith atom not involved in the bonding,
and o; the atomic polarizability of the ith atom obtainable from the delta-function
strength A;.

The bond perpendicular component of a diatomic molecule is, on the basis of a semi-
-empirical delta-function potential model, simply the sum of the two atomic polarizabilities.
If the electronic shape of an atom is assumed to be viewed from a point on a line perpendi-
cular to the internuclear axis, whereas on a line passing through the nucleus the shape
approximates that of the nonbonded atom, then the bond perpendicular component
of the polarizability can be written as

o, = 2u, for a nonpolar 4, molecule (30)
and
o, = ay+og for a polar AB molecule 31

where a, and aj are the atomic polarizabilities of the atoms A and B, respectively. If
atom A is less electronegative than atom B, the atomic contributions would be considered
here according to the square of their respective electronegativities; and the bond perpen-
dicular component of the polarizability can be written as

o, = 2(xGos+x505) (x5 +x5). (32

If there are three atoms A4, B, and C located at the corners of a triangle, and if all
of them are nonbonded, then each atom has three “polarizability degrees of freedom”,
and the average molecular polarizability is written as

&M = (1/3) (3“A +30£B+3OCC) = aA +O£B+O£C. (33)

If there are bonds between 4 and B and between B and C for the same system, then one
atomic polarizability degrees of freedom is taken up per bond per atom, and the mean
molecular polarizability is then

Gy = (1/3) (yap+oy e+ 2 200, ) (34
where the sum of the bond perpendicular components can be written as

Y 20, = BN=2n,) (X, x}o,/Y x7). (35)
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Here, N is the number of atoms in the molecule, n, the number of bonds in the molecule,
x; the electronegativity of the i-th atom on Pauling’s scale [297], and «; the atomic polariz-
ability of the i-th atom. The term (3N — 2#,) gives the number of remaining (residual) atomic

Fig. 2. Residual atomic polarizability degrees of freedom for (a) hydrogen cyanide, (b) aluminum triflu-
oride, and (c) hydrazine -

polarizability degrees of freedom, denoted, n,r. This is directly obtained by considering
the symmetry or geometry of the molecular system. It is assumed then that every isolated
atom is allowed to possess three degrees of polarizability freedom and every bond which
is formed between two atoms removes two of these polarizability degrees of freedom,
with the exception that if two bonds are formed from the same atom (carbon in carbon
dioxide) and exist in a linear configuration, then only three atomic polarizability degrees
of freedom are lost, and if three bonds are formed from the same atom (sulfur in sulfur
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trioxide) and exist in a planar configuration, then only five atomic polarizability degrees
of freedom are lost. Thus, the sum of the perpendicular components of the polarizability
is given as

20, = ng (), Xy, x7) (36)

schematic representations of the residual atomic polarizability degrees of freedom for
hydrogen cyanide, aluminum trifluoride and hydrazine are given in Fig. 2. The value of
ngy is six for hydrogen cyanide, seven for aluminum trifluoride, and eight for hydrazine.
Hence, the analytical expression for the average or mean molecular polarizability for
a polyatomic molecule is given as follows;

Gy = (1/3) [Z oy, + Z Sty +nyy %}] @7

oanr = (1/3) [X o+ X pn+ 2. 200, ] (3%)

4. Results

In order to test how far the polarizability could be a useful criterion for testing the
utility of the delta-function potential model adopted, several molecules having six, seven
and eight residual atomic polarizability degrees of freedom (ny;) were considered, and
the polarizabilities were computed by using the equations given above. The molecular
structural data used for such computations were taken from Sutton [34] and some recent
microwave and electron diffraction studies [35, 36]. The Lewis-Langmuir octet rule
[31, 32] modified by Linnett [33] as a double-quartet of electrons has been considered
here for most of the molecules. The required data for such computations are the molecular
structural data, electronegativities of the elements on Pauling’s scale [29], delta-function
strengths, the parameter “c” values, and the atomic polarizabilities. For twenty elements
involved in the molecules of the present study, the delta-function strengths in atomic
units, the parameter “c” values in atomic units, and the atomic polarizabilities in 10-2% cm?3
were calculated, and their values are given in Table I for the bonds of both diatomic
and polyatomic systems. The molecules for which the bond parallel components, the
contributions of the nonbond region electrons and the bond perpendicular components
were calculated from the delta-function potential model have been classified here on the
basis of their respective number of residual atomic polarizability degrees of freedom (n,y),
and the calculated values in 1025 cm?® are given in Tables II to IV. The available experi-
mental values of the dielectric constants, refractive indices, dipole moments and molar
refractions were used to obtain the average molecular polarizabilities through the well-
-known Clausius-Mossotti, Langevin-Debye and Lorentz-Lorenz equations. The obtained
values in 10-2% cm?® are also given in Tables II to IV. _

The perpendicular components were expetimentally obtained by Denbigh [37]
and Vickery and Denbigh [38], and their perpendicular components are qualitatively
equal to the sum of the respective atomic polarizabilities calculated in the present in-
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TABLE 1

Delta-function strengths in atomic units, ¢ values in atomic units, and atomic polarizabilities in 10-25 cm®
of some elements for bonds of diatomic and polyatomic systems

Element A At c ct %y ot

Hydrogen 1.000° 1.414 592

Beryllium 0.538 0.481 1.522 1.361 38.02 53.42
Magnesium 0.414 0.393 1.434 1.361 83.70 97.94
Calcium 0.337 0.323 1.348 1.292 154.76 176.38
Strontium 0.319 0.311 1.427 1.391 182.42 197.62
Barium 0.289 0.283 1.416 1.386 245.84 262.27
Zinc 0.393 0.380 1.361 1.316 97.94 108.33
Boron 0.785 0.687 2.626 2.349 13.58 19.07
Aluminum 0.533 0.506 2.261 2.147 39.18 44.63
Gallium 0.472 0.456 2.312 2234 56.35 62.69
Carbon . 0.846 0.757 3.384 3.028 9.78 13.70
Germanium 0.536 0.518 3.032 2,930 38.48 42.77
Nitrogen 0.927 0.829 4.146 3.707 7.43 10.43
Phosphorus 0.630 0.598 3.451 3.275 23.67 27.80
Antimony 0.564 0.484 3.507 3.422 48.64 52.43
Oxygen 1.000 0.895 4.899 4.385 5.92 8.29
Sulfur 0.688 0.653 4.128 3.918 18.20 21.35
Fluorine 1.065 0.953 5.635 5.043 4.90 6.87
Chlorine 0.753 0.715 4.880 4.634 13.88 16.26
Bromine 0.633 0.612 4.737 4.580 19.41 25.93

! The values for the bonds of polyatomic systems.

TABLE I

Experimental and calculated polarizabilities in 10-2° cm3 for molecules of six residual atomic polarizability
‘ degrees of freedom

Molecule 2| py 2o X2, ap(cale.) ap(exper.)
N.O 30.140 9.891 46.266 28.766 29.1642 ©
HCN 28.456 2.972 53.099 28.176 25.913¢
BeF, 5.833 8.400 42.455 18.896 16.167¢
BeCl, 31.907 23.794 99.373 51.691
MgF, 8.834 8.400 49.218 22.151 18.4264
MgCl, 43.246 23.79%4 113.278 60.106 53.8514
CaF, 11.746 8.400 56.647 25.598 24.9644
SrF, 14.019 8.400 61.676 28.032 30.1954
BaF, 23.896 8.400 69.125 33.807 38.5164
BaCl, 87.145 23.794 143.212 84.717 79.8064
ZnCl, 28.942 23.794 153.859 68.859 | 67.363¢

2 H. E. Watson, G. G. Rao, K. L. Ramaswamy, Proc. Roy. Soc., A143, 558 (1934).

b H. E. Watson, G. P. Kane, K. L. Ramaswamy, Proc. Roy. Soc., A156, 144 (1936).

¢J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids, John
Wiley and Sons, New York 1954.

48. S. Batsonov, Refractometry and Chemical Structure, translated by P. P. Sutton, Constants
Bureau, New York 1961.
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TABLE III

Experimental and calculated polarizabilities in 10-2° cm® for molecules of seven residual atomic polariz-

ability degrees of freedom

Molecule 2| g 2| X2 apr(cale.) wp(exper.)
GeH;Cl 101.128 11.897 93.942 68.989 66.967%
SO.F, 49.005 20.240 48.557 39.267
S0.Cl, 126.652 35.633 75.861 79.382 82.025P
AlF; 24.115 12.600 46.753 27.823
AlCl; 121.421 35.691 113.718 90.277 89.435¢
AlBr; 160.947 49.911 151.284 120.714 124.464°
All; 276.226 76.423 219.223 190.624 199.079¢
COH, 30.216 3.947 53.899 29.354 27.7384
COCl, 79.463 27.739 78.244 61.815 65.778°
COBr, 128.997 37.221 92.669 86.296

a . P. Smyth, A. J: Grossman, S. R. Ginsburg, J. Amer. Chem. Soc., 62, 192 (1940).
b1 E. Coop, L. E. Sutton, Trans. Faraday Soc., 35, 505 (1939).

¢ See footnote d of Table 2.

d B, C. Hurdis, C. P. Smyth, J. Amer. Chem. Soc., 65, 89 (1943).
e C. P. Smyth, K. B. McAlpine, J. Amer. Chem. Soc., 56, 1697 (1934).

TABLE IV

Experimental and calculated polarizabilities in 10-2% cm® for molecules of eight residual atomic polariz-

ability degrees of freedom

Molecule Zet)| py 20| n 220, xpr(calc.) apr(exper.)
BrFs 115.400 26.546 49.561 63.836

IFs 99.661 27.278 53.588 60.176

PF; 47.603 20.999 47.045 38.549 36.4552
PCl; 257.667 59.483 118.030 145 060

SbCls 291.544 59.486 131.692 160.907 156.7582
AlCls 284.490 63.451 126.609 158.183

Ga,Cls 342.156 63.451 140.464 182.024

HNO; 48.515 13.813 54.238 38.855 38.3972
NFO; 69.607 18.013 51.847 46.489

N,H, 35.993 5.944 65.582 35.839 34.5532
B0, 69.976 7.893 36.943 38.271

Al,0, 290.266 7.893 43.857 114.005

2 See footnote d of Table II.

vestigation. As an example, the values of atomic polarizabilities in 102 cm® derived
from the experimental values of perpendicular components [37, 38] for hydrogen, oxygen,
nitrogen, and carbon atoms are 4.48, 5.94, 7.24 and 10.22, respectively, and the computed
values from the delta-function potential model for the same atoms are 5.92, 5.92, 7.43
and 9.78, respectively. Thus, the computed values of atomic polarizabilities are in good

agreement with the experimental ones.
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The electronic configuration of nitrous oxide in the ground state given in Fig. 1 is
in accordance with the results of electron diffraction, microwave and spectroscopic
studies [39-42], and yields good agreement between the experimental and computed values
of molecular polarizabilities (see Table IT). Hydrogen cyanide has a double-quartet of elec-
trons around carbon and nitrogen atoms, and the agreement between experimental and
computed values of molecular polarizabilities is good. The dihalides of group II4 have
only single bonds with a double-quartet of electrons around the halogen atoms, and their
calculated values of molecular polarizabilities are in reasonable agreement with experi-
mental data (see Table II).

The molecule chlorogermane has only single bonds; every atom except hydrogen
is surrounded by a double-quartet of electrons satisfying the Lewis-Langmuir octet rule
[31, 32] and the Linnett model [33]; and there is good agreement between the experimental
and computed values of molecular polarizabilities (see Table III). A single bond for the
sulfur-oxygen distance has been considered here for sulfuryl fluoride and sulfuryl chloride,
and the computed values of polarizabilities are given in Table IIl. If a double bond is
considered for the sulfur-oxygen distance for these two molecules, one obtains the following
values in 10-° em®: Zo,, = 86.324, Zo, = 16.293, 22ua,, = 48.557, and &, = 50.391
for sulfuryl fluoride; Zoyp, = 164.634, Za, = 31.687, 220, = 75.861 and @y =
= 90.727 for sulfuryl chloride. The observed values for the sulfur-oxygen distance in
both of these molecules in 1.43 A, and this value actually represents nearly a double
bond for the sulfur-oxygen distance of many molecules [34]. If a double bond is considered
for the sulfur-oxygen distance, both these molecules fail to obey the Lewis-Langmuir
octet rule [31, 32] and Linnett model [33] due to the presence of ten valence electrons
around the sulfur atom. The experimental value of the molecular polarizability for sulfuryl
chloride is thus not in reasonable agreement with the value calculated from the delta-
-function potential model. If a single bond is considered for the sulfur-oxygen distance,
both these molecules obey the Linnett model [33] and Lewis-Langmuir octet rule [31, 32],
and the experimental value of molecular polarizability for sulfuryl chloride is in good
agreement with the value calculated from the delta-function potential model. The trihalides
of aluminum have single bonds, whereas formaldehyde and its halogen-substituted com-
pounds have double bonds for the carbon-oxygen distance, and all experimental values
of molecular polarizabilities are in good agreement with those computed (see Table III).
More results would be presented later for similar molecules.

The experimental investigations [34] favour a trigonal bipyramidal configuration for
the pentahalides of bromine, iodine, phosphorus and antimony. On the basis of this
configuration, there is a double-quartet of electrons around the peripheral halogen atoms,
while ten electrons surround the central phosphorus and antimony atoms and twelve
electrons surround the central bromine and iodine atoms. Though these molecules partly
obey the Lewis-Langmuir octet rule [31, 32] and Linnett model [33], the agreement between
the experimental and computed values of the molecular polarizabilities is good for phospho-
rus pentafluoride and antimony pentachloride. The electronic configuration in the ground
state given in Fig. 1 for aluminum trichloride dimer satisfies the Linnett model [33] and
Lewis-Langmuir octet rule [31, 32] and is in accordance with earlier investigations by
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Fajans [43]. The same configuration has been adopted here for the Ga,Cl, molecule.
The electronic configuration of nitric acid in the ground state is given in Fig. 1, where
ONO, group is planar and NOH plane is perpendicular to the ONO, plane. The observed
value of 1.22 A has been accepted for the shorter mitrogen-oxygen distance with 1% as
the bond order, and the observed value of 1.41 A has been taken for the Jonger nitrogen-
-oxygen distance with 1 as the bond order. The proposed configuration here for nitric
acid obeys the Lewis-Langmuir octet rule [31, 32] and Linnett model [33], satisfies the ex-
perimental values of bond distances [34], and yields good agreement between the experimen-
tal and computed values of molecular polarizabilities. The boron oxide dimer and aluminum
oxide dimer molecules have single and double bonds with a double-quarter of electrons
around the oxygen atom. The nonplanar hydrazine molecule has single bonds with a double-
-quartet of electrons around the nitrogen atom, and the experimental and computed
values of molecular polarizabilities tally (see Table IV).

Thus, the delta-function potential model clearly gives explicit expressions for the
bond patallel component, bond perpendicular component, contribution by the nonbond
region electrons and mean molecular polarizability for the complex as well as simple
molecules. All these are in accordance with the investigations of Denbigh [37] in which
the molar refraction of a molecule is assumed to be the sum of refractions of all bonds
in the molecule, and similarly, the molecular polarizability is assumed here to be the sum
of the bond polarizabilities. The contributions by the bond region electrons and the non-
bond region electrons are clearly distinguished. The bond parallel component is a linear
combination of atomic polarizabilities and independent of the internuclear distance. The
bond parallel components can easily be transferred from one molecular system to another,
irrespective of the configurations of the two different molecular systems, provided the inter-
nuclear distances in the two different molecular systems are nearly identical. The small
changes in the values of the parallel components from one molecular system to another
may be due to the slightly different values of bond distances, as the parallel component is
roughly proportional to the fourth power of the internuclear distance. In addition to these
special features of the delta-function potential model, one finds that there is good agreement
between the experimental and computed values of the atomic and molecular polarizabilities.
Thus, the present investigation clearly shows that the delta-function potential model
is very useful in evaluating the atomic, bond and molecular polarizabilities for any mole-
cular system.
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