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A general irreversible quantum statistical thermodynamics with many temperatures
is formulated. It is called the “generalized irreversible thermodynamics™ because of the
possibility of occurrence of many temperatures with the same or different dimensions (in partic-
ular of temperatutes of different orders). The theory is based on a non-Hamiltonian (irre-
versible) dynamics of density operators described by a .semigroup of motions satisfying:
Kossakowski’s axioms (Kossakowski 1972), and on a generalization of the Kossakowski
principle of the isoentropic motion (Kossakowski 1969). It is assumed that the system is
observed only in an initial moment in the macroscopic sense (i.e. a finite number of ensemble:
mean values of linearly independent and thermodynamically regular observables of the
system are measured). The theory describes only the really irreversible effects and neglects
temporal fluctuations of entropy (memory cycle effects). The paper gives also a classification
of all possible motions of a non-isolated quantum system.

1. Introduction

«...et sic matheseos demonstrationes cum aleae incertitudine jungendo
et quae contraria videntur conciliando ab utraque nominationem
suam accipiens stupendum hunc titulem jure sibi arrogat: aleae
Geometria.”

Blaise Pascal®

* The present work was sponsored by the Mathematical Institute of the Polish Academy of Sciences,
Project 06.1.1-05.3.03. , : i X ) ) "

** Address: Instytut Fizyki, Uniwersytet M. Kopernika, Torun, Grudziadzka 5, Poland.

1« and thus joining mathematical proofs with the uncertainty of chance and reconciling seeming
contradictions, lending its name from both its parts, this science is fully worthy of its astonishing name:
Geometry of chance.” B. Pascal in a letter to the. Academy of Paris, Celeberrimae Matheseos Academiae
Parisiensi, 1654 (Pascal 1954, p. 73, cf. also Rényi 1969, pp. 18 and: 89).
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Pascal, one of the founders of probability theory, expressed in these words the concep-
tual difficulties which plagued this theory since its beginning almost to the present days,
and which plague statistical thermodynamics even now. The problem consists, namely,

n “reconciling seeming contradictions™ between certainty and uncertainty, and between
reversibility and irreversibility, respectively. After centuries of inconclusive discussions
the first problem was finally solved by Kolmogorov (1933) by means of a rigorous axio-
matic formulation of the concept of probability. We think that the second problem was
solved only recently by Kossakowski (1972) also by means of an axiomatic formulation,
in this case of the concept of irreversible motion. The irreversible motions of a physical
system form a semigroup, while the reversible motions form a group, and the difference
lies in the existence o1 non-existence of the inverse element (inverse motion) to a given
motion. Thus we can never obtain irreversibility from reversibility by any mathematical
tricks, such as averaging, coarse-graining, incomplete knowledge, smoothing, etc., in spite
of claims of many authors (¢f. the mentioned selection of quotations by Landsberg (1970)
‘which shows the drastic differences of opinions on the foundations of statistical thermo-
dynamics between many leading contemporary scientists of today). Shortly, neither prob-
ability theory nor information theory can produce irreversibility from reversibility of
:a mechanical system, or more precisely of a closed (isolated) mechanical system, classical
‘or quantum. What these theories can actually produce at most is only seeming irrevers-
ibility, “reversible 1rrever51b111ty , 1. e. periodic or quasi-periodic oscillations of entropy
(information), where information is lost and recovered again, as in memory systems of
«computers (we shall call such phenomena memory cycle effects or memory loop
effects). Some people claimed that periods of such oscillations may be enormously long
(Poincaré periods), but we shall show below by an explicit calculation of an example
that, on the contrary, these periods may be also enormously short (as Larmor precession
periods). The problem, however, consists not in the shortness or largeness of some pe-
Tiods, but in their existence or non-existence. Therefore, the principal question of irre-
“versibility cannot be solved by any approximative method, such as the perturbation method,
for instance. Also finite systems (with a finite number of particles), even very large, cannot
be approximated (for this purpose) by infinite systems, as is frequently done (cf. Ruelle
1969) simply because the difference between these systems is infinite. Infinite systems are
closed and open in the same time, both in the topological and in the physical sense of this
word (the latter meaning isolation or non-isolation of a system), and therefore they can
have a Hamiltonian and be irreversible, which cannot be true for any finite system. Finite
systems are irreversible only if they are open (non-isolated), i. e. non-Hamiltonian,
anyway on the base of the present quantum (and classical) mechanics; how this will turn
.out with future mechanics, we cannot Judge nor even guess now. Closeness (isolation)
‘means non-existence of any dynamical interaction with particles or degrees of freedom
‘which do not belong to our system, no matter whether they lie inside or outside of the
:spacial boundary of the system. (The so-called internal friction is an example of the former,
and the radiation. damping of a laser is an example of the latter.)

-- The aim of the present paper is twofold. In part I we would like to formulate and discuss
:the principle of irreversible statistical thermodynamics in our sense, including also multi-
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temperature thermodynamics (Ingarden 1963, 1965, 1968, 1969), and called therefore
generalized irreversible thermodynamics. In this formulation we shall use and in part
generalize important results of Kossakowski (1969, 1972) which were obtained in close
contact and collaboration with the present investigation. In Part II we shall develop our
investige'ttion, of thermodynamics of a simple model of the laser published previously only
in a short and imperfect summary (Ingarden 1971), using also some results of Z. Kojro
which will be published in his Ph. D. thesis performed under the guidance of the present
author. The investigations of Part II will be an illustration and application of the general
methods presented in Part L

2. A classification of motions of general quantum systems

By a general quantum system we mean a quantum system which is closed (isol-
ated, Hamiltonian) or open (non-isolated, non-Hamiltonian). By a motion in the most
general sense of a general quantum system we mean an arbitrary map

AW =W, 2.1
where W is the set of all density operators (states, mixed states) of the system, i. e.
W= WH): = {peL(H):0>0,Tro = 1}. 2.2y

Here: = means “equal by definition”, L(H) is the set of all linear operators acting in the
Hilbert space H of the system, and ¢ > 0 denotes the positive definiteness of operator g.

Following Kossakowski (1972) we introduce several linear spaces connected with
the Hilbert space H. Let B;(H) be the Banach space (over the field R of real numbers)
of self-adjoint trace class linear operators on H — a linear operator is called trace class
iff (if and only if) its trace is finite — with the norm

llglh i= sup 3% [Gx 032 .3

whére the supremum is taken over all orthonormal complete bases {x,} and {y,} in H,
and (.,.) denotes the scalar product in H, i. e.

By(H): = {ee L(H): ¢ = ¢*, llells < oo} (2.4)

The set of all real valued continuous linear functionals on B;(H) is called the dual

space to B,(H) and will be denoted by B,(H). It is well-known (Dunford and Schwartz
1963) that each real continuous linear functional on B,;(H) has the form

{4, 0> :=Tr(4o), 0€Bi(H), : (2.5)

where A is a bounded self-adjoint linear operator on H (a bounded observable of our
system). The space B,(H) is also a Banach space with the norm

N Ax
4|l := sup [{4, )| = sup Ll

llelj1=1 werr |1%[]

AeB_(H), ||x]|* = (x, X). (2.6)



The set of all positive definite operators from By(H) is called the positive cone
in B;(H) and will be denoted by B; (H), i. e.

B{(H):= {geBy(H): ¢ > 0}. 2.7

Denoting by Bf(H) the dual cone to Bf(H), i. e. the set of all 4 € Bo(H) such
that {4, ¢> >0 for all ¢ eBf(H), we see that BE(H) consists of all positive definite
bounded linear operators on H, i. e. is the positive cone in B, (H),

BJ(H):= {AeB(H): A > 0}. (2.8)
We have ‘
llelly = Tro, geBy(H), (2.9)

but this equality is in general not true outside of BfL_ (H) (since trace can be then negative,
but norm is always non-negative).

The Banach space B;(H) is the smallest linear space in which the set W(H) of all
states may be embeded, and we have

W(H) = {oeB{ (H): iloil, = 1}. (2.10)

- The set B,(H) of all bounded linear operators on B;(H) (superoperators with respect
to H) is also a Banach space, namely, with respect to the norm

Al == ”sltllp ) i[4¢lly,  oeBy(H), AeB(H). (2.11)
el|1=
It can be shown that to every A € #,(H) there corresponds one and only one
linear operator A* on B, (H) defined by

<4, Ag) = (A4, o, AeB.(H), geB,(H). 2.12)
The set of all A* forms also a Banach space %#,,(H) (dual to %,(H)) with the norm

AN = | sup [|4"All, = lilAill;. (2.13)

0=

A linear operator A € 4,(H) is called a positive endomorphism of B,(H) iff
it satisfies the conditions

1) A:Bj(H) - Bf(H), (2.14)
2) |ldelly = {lells, eeBy (H). (2.15)

A positive endomorphism of B,(H) maps W(H) into itself and, therefore, is a motion.
We call such a motion a linear motion. v
The following theorem can be proved (Kossakowski 1972) for positive endomor-
phisms:
lldelly < llelly, e €By(H), (2.16)

i. e. that 4 is a contracting operator (¢f., e. g., Dynkin 1965, Yosida 1965).
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We say-that a sequence of {g,} of clements of By(H) is strongly convergent to
an element ¢ € B;(H) and write

s-lim g, = ¢ 2.17)
iff
lle,—elly = 0 for n — co. (2.18)

It is well-known (¢f., e. g., Wichmann 1963) that the set W(H) of all states is convex,
and its extremal points (and only they) are pure states, i. e. states of the form

o = P,, xeH, (2.19)

where P, is the projector operator on a vector Xx.
We may proceed now to a classification of motions. First of all we shall classify mo-
tions with respect to pure or mixed character of initial and final states,

o' = Ao, (2.20)

where g is an initial, ¢’ — a final state, and 4 € @, @ = Q(H) being the set of all motions
of a system with Hilbert space H. For the initial state there are only two possibilities:
P — pure, and M — mixed (non-pure). For the final state by a given character of the
initial state there exist, however, three possibilities: P, M, and C — combined (pure or
mixed, depending on other properties of the initial state). In such a way we obtain the
complete classification:

TABLE I
Initial Final state (f = 00)
T 213 [ +1s 617 s>
P P P \ M ‘ M C C C P M
M M P M | P C P M (o C

Of the enumerated 9 cases only 3 first ones occur in our investigations: an example of
case 1 is any Hamiltonian motion, examples of cases 2 and 3 will be given in Part II
(they are examples or ergodic motions). Whether the other cases can occur in nature
depends on other properties which should be assumed for real motions. If we assume
that each motion in strongly continuous in B;(H), i. e. in the sense of the strong
convergence in B;(H)(2.18), we obtain the result that the motion is linear.

- Indeed, if we make a statistical mixture of two initial states ¢; and g, with proba-
bilities

p1,02 >0, pitpo =1, .21
i.e.
0 = P101+P202, 01,02 €By(H), : (2:22)



this mixture should be preserved also after transformation (because we have an ensemble
of physical systems which do not interact physically and which are in the same environ-
ment by definition)

A(p101+P202) = p1Aoi+p,40,, (2.23)

¢f. Schldgl, Stahl and Bausch (1965). Eq. (2.23) is a functional equation which among
strongly continuous solutions has only a linearly inhomogeneous solution as we may infer
by analogy with the Jansen functional equation (cf. Aczél 1961, p. 49, we do not go here
into details of a rigorous proof). (We may remark that (2.23) is weaker than the condition
of linearity because of (2.21), by linearity p, and p, should be arbitrary real or complex
numbers.) But inhomogeneous term can be avoided (Schldgl, Stahl and Bausch 1965)
by writing (since Tr ¢ = 1)

Lo+0o = (L+9o Tr)e = L'g, (2.24)

where L and L’ are linear (homogeneous) operators in W(H).

Up to now we did not consider time as a parameter of motion (we are interested here
in nonrelativistic quantum physics only). With respect to time we may distinguish three
principal types of linear motions: Markov processes (of order 1), i. e. described by linear
differential equations of order 1 with respect to o and time #, Markov processés of
higher order, i. e. described by linear differential equations of order n > 1 with réspect
to ¢ and ¢, and stochastic processes with hysteresis, i. e. described by a linear
integral equation with respect to ¢ and ¢, irreducible to linear differential equations of
final order (motion non-local in time).

Kossakowski (1972) discussed the first of these three possible cases and for the fol-
lowing we shall confine ourselves only to the case discussed by him. His axiomatic defini-
tion goes as follows:

Definition 1. A family Y(H): = {A(t), t > 0} of endomorphisms of B;(H) is said
to be a dynamical semigroup (quantum Markov process) of a quantum system
iff the following conditions are satisfied:

1) A():Bi(H)- B{(H), t>0, (2.25)

2) [A®elly = llellis,  0eBi (H), . t>0, (2.26)

3) A(t) is strongly continuous with respect to ¢ >0, )

4) slimA(fg = o,  oeB,(H), (228)
t—>+0

5) A(t) A(s) = A(t+s), 1,5 = 0. '(2 29)

In other words, we may express this definition by saying that a dynamical semigroup
Y(H) is a strongly continuous one-parameter contracting semigroup of positive endo-
morphisms of B;(H).

We have the following



Theorem 1. (Kossakowski 1972). Let Y(H) be a dynamical semigroup in B;(H).
A family Y*(H): = {A*(¢), t > 0} of endomorphisms A*(¢) of B (H)dual to A(t) € Y(H)
t > 0, satisfies the conditions

1) A'(t):Bi(H) - B(H), t>0, (2.30)
2) A*(@) I =1I,t >0 (I is the identity operator on H), (2.31)
3) A WA, <Il4llws  AeB,(H), (2.32)
4) A*(t) is strongly continuous with respect to 7 >0, (_2.33)
5) s-li+ng A (DA = A, AeB,(H), (2.34)

g A
6) A MDA () = A(t+s), t,s=0. (2.35)

The family Y*(H) dual to Y(H) will be called the dual dynamical semigroup
of a quantum system. From (2.12) it follows that

(A, A(t)o) = {A*()4, ), © €By(H), A € B,(H),1>0. (2.36)

Dynamical semigroups Y(H) and Y*(H) are isomorphic and they describe the time
evolution of our physical system in the Schrédinger picture and in the Heisenberg picture,
respectively. Eq. (2.36) shows that the mean values do not depend on the picture. This is
shown only for the bounded. observables, but approximating unbounded observables by
the bounded ones we obtain the same result for any observable, if only a mean value
exists. '

Using a theorem by Hille (Hille and Phillips 1957) and Yosida (1965) it may be easily
proved that there exists an infinitesimal operator L of Y(H), and L* of Y*(H), defined
on dense sets D(L) C By(H) and D(L*) C B, (H) respectively, such that the following
equations are satisfied

d
T (A()) = L(A(t)o) = A(t) (Le), eeD(L), 2.37)
and

%(A*(t)A) = L'(A'()A) = A"() (L"), AeD(L). (2.38)

Generators L and L* may be called generalized Liouville operators. Egs (2.37)
and (2.38) acquire more common forms when we write

o(t): = A(t)e, A(t): = A*(t)A. (2.39)

Kossakowski. (1972) proved the following fundamental
Theorem 2. Let Yo(H) = {A(t) t>0}bea fanuly of endomorphisms. of Bl(H) satis-
fying the conditions
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1) (2.25), 3) (2.27), 4) (2.28), 5) (2.29) and instead of the condition 2) (2.26), the
stronger condition

2 [lA@elly = llelly, e €By(H),t>=0. (2.40)

Then there exists a strongly continuous one-parameter group Go(H): = {U@),t eR}
of unitary operators on H such that

At)o = U(t)o U'(?), t=>0, 0 €By(H), (2.41)

i. e. the semigroup Y,(H) can be extended to the group Go(H). Such a motion is a Hamil-
tonian motion and is reversible. We see, therefore, that irreversibility of motion lies in the
difference in the conditions 2) and 2’), in particular, in the difference between the Banach
space B;(H) and its positive cone B (H) as the domain of preservation the norm 2.3)
being in B (H) (and only there) equivalent to the trace of density operators. Preservation
of this trace means preservation of probability which has a sense only inside of the cone.
We see how closely mathematics is here connected with its physical interpretation.

Examples of non-Hamiltonian motions and their application to the theory of lasers
will be given in Part II.

3. Irreversible statistical thermodynamics

What has been piesented up to now is not yet statistical thermodynamics, it may be
called at most statistical mechanics (we carefully distinguish between these two concepts).
Statistical mechanics is mechanics, Hamiltonian or non-Hamiltonian, reversible or non-
reversible, of statistical operators (density operators), while the usual (Hamiltonian) me-
chanics is the same theory concerning only pure states (state vectors). (Both theories can
be distinguished only in the case 1 of Table I). Generalized Kossakowski’s equations
(2.37), (2.38) with substitution (2.39) can be called also the quantum master equations
or the generalized quantum Fokker-Planck equations (a more special form
of the Fokker-Planck equation will be considered in Part II) concerning (in contradistinc-
tion to the preceding theories) not only the diagonal part of density operators, but its full
shape. However, in order to integrate these equations we have not only to know how to
integrate operational equations, but also to know the initial conditions for these equa-
tions, i.e. either ¢ from W(H) or A from B, (H). The latter knowledge requires in general
infinite number of measurements and is mostly unavailable, anyway not by a macroscopic
measurement. Macroscopic measurement is by definition incomplete and contains only
a finite number of numerical values.

Our idea of statistical thefmodynamics is based on the concept of a macrostate which
is closely connected with that of macroscopic measurement. The origin of the idea of a
macrostate may be traced to Boltzmann, but its precise formulation by means of informa-
tion-theoretical methods was apparently given first by Ingarden and Urbanik (1962).
In this paper this concept was defined only for one moment of time and with respect to
one observable -(4-thermodynamics), and without explicit use of density operators. Only
in later papers (Ingarden 1963, 1965, 1968, 1969) many observables and density operators
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were introduced. On the other hand, Urbanik (1964) gave the first definition of the time
evolution of macrostate (without repeating measurements) of a Hamiltonian system, and
his. definition was modificated and essentially improved by Kossakowski (1969, 1970).
In the two latter papers Kossakowski gave also closed equations of motions for mean values
of observables in question which may be justly called thermodynamical equations since
they contain only macroscopical information and its time evolution. Kossakowski used
for this the so-called isoentropic approximation which simplified very the much solution
by making equations local in time. Independently, Robertson (1966, 1967) found similar
equations, but without the concept of macrostate and the method of isoentropic motion,
although using information-theoretical methods of Jaynes (1957, 1957a). In the present pa-
per we generalize the Kossakowski isoentropic method for. the non-Hamiltonian motion
and give the physical interpretation of this method. This inteipretation seems to be im-
portant since both Robertson and Kossakowski considered their methods as showing irre-
versibility even by Hamiltonian motion, which according to the present author is impos-
sible. The present author distinguishes between “‘real” irreversibility (monotonic in time
" change of entropy) and “apparent”, or “quasi” irreversibility (periodic or quasi-periodic
change of entropy). In Part II it will be shown how this generalized method works in
practice, and how reasonable and useful are the results it gives in the laser theory.
Let us consider n observables Ay, A5, ..., A, (not necessarily bounded) of a physical
system (for simplicity we work in the Schrodinger picture, but all the theory can be rewritten
also in the Heisenberg picture, ¢f. Section 2), such that

1) ]f a01+a1A1+a2A2—|—...+a,,An = 0, ao, al, ceey a,, € R,
then g = a; = ... =a, =0 @3B.1)

(we say then that I, 44, ..., A, are linearly independent),
2) there exists da, ..., @, € R such that

Tr exp (— ‘Z a;A;) < © (3.2)

j=1

(we say then that Ay, ..., 4, are thermodynamically regular). _
Now we assume that in time # = 0 we measure the ensemble mean values of observ-
ables 4,, ..., 4,

<A1’ 9> =Tr (AIQ) = Ula eres <An9 Q> =Tr (Ane) = Um QGW(H) (33)
The macrostate M in time ¢ = 0 is defined as
M:= {eeW(H):Tr(A;0) = U;,j =1, ..., n}. 3.4

The mean values of macrostate M are by definition U; (j =1, ....n) while the
entropy (information) of M is defined as

S =SM):=sup(~Tr(elng). (3.5)
eeM



12

It may be shown (Ingarden and Urbanik, 1962, Wichmann 1963, Kossakowski: 1970)
that there exists the state gy € M (called the representative state of M) such that

—Tr (om In o) = S(M), - (3.6

i.e. the state of the maximum entiopy in M. :
To construct the macrostate in time 7 >0 we assume that all o € W(H) develop
in time according to equations (2.37) and (2.39) -

d 5
0~ Low, o = A0e )

In particular, (3.7) defines the time evolution of gy,:

om(®) := Aoy, t=0. (3.8)

By means of gy(¢) we define in turn

U):=Tr(40u®), j=1,...n, t

\%
o

3.9) -
and
M(1) := {eeW(H): Tr Ajp)=U), j=1,...,n}, =0, (3.10)

called just the macrostate in time #>> 0. The state g)(¢) € M(¢), but not necessarily
has the maximum value of entropy over M(t) (such a situation occurs, in general, when 4;
do not commute among themselves and L*4; # 0, so for # > 0 it is not necessarily the
representative state of M(t)). The representative state of M(z) will be denoted by

om(®) 1= 0pmq) (3.11)

and may be easily calculated by means of Uy(z), j = 1, ..., n. Namely (cf. Ingarden 1965,
1968, Kossakowski 1969, 1970), we obtain

ou(t) = Z7H(B1(1), .-, Bu(®)) exp (— .Zl Bin4p, 1=0, (3.12)
2O, 0 BD) 1= Tr exp (= Y. B{DA), (3.13)
j=
where the inverse temperatures f,(¢),j = 1, ..., n, can be calculated from the equafions
Um = l;j( 5 In Z(B,(1), % B1), Jj=1..,n1=0. (3.14)

We have, of course, ’
ou(0) = em(0) = ou- (3.15)

All this calculation is unique and in principle can be performed in any case. Practically,
however, such a calculation can be cartied out only in very exceptional cases, even if the
motion is Hamiltonian (which we do not assume). The difficulty consists in integration
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of équations of motion (2.37) ‘or (3.7) and finding p(?) (3.8). Therefore, we shall try to
find Uj(¢) directly from Kossakowski’s master equations (2.}7) and‘initial‘ values U;(0) =
= Uj, j =1, ..., n, by using information-theoretical estimation consisting in maximizing
entropy (the Jaynes principle, Jaynes 1957, 1957a) in any time # > 0. We obtain

dUTft(t) = Tr (A; d—g%t)) =Tr(ALoy(®), Jj=1,.n (3.16)
Writing
 on® = o@D +(enD—ou(®) (3.17)
and neglecting the diﬁ‘er’enée om(t)—op(t) in comparison with oy(?) we get
dUTjt(t) = Tr (4;Loy(t)) = F (U, ..., U 1)),

j=1,n, 1320 (3.18)

since 0(¢) is a function of U(¢), ..., U,(t) in the same time ¢ >0 defined by (3.12), (3.13),
and (3.14). In such a way we obtain a closed system of equation of motion for the thermo-
dynamic quantities U(f) from which we calculate the inverse temperatures f;(t) and the
thermodynamic entropy
S(@) := sup (Tr(—pln g)) = Tr (—op(t) In 0 (¥)), t=>=0. (3.19)
0eM(1)

Egs (3.18) can be now integrated independently of integration of operator equation

(2.37) with 'initial conditions
U 0)=U

» J=1,..,n (3.20)

We may call (3.18) the thermodynamical equations of motion of our system
observed macroscopically by means of observables A4, ..., 4, (of (44, ..., 4,)-thermodyna-
mics, as may be said more precisely). Our method is a direct generalization of the Kossa-
kowski izoentropic method (Kossakowski 1969, 1970) for a non-Hamiltonian motions.
Now S(#) is no more constant in time, we obtain in general a monotonic increase of entropy
(if we have no pumping of information into the system). In Part II we shall study this
behaviour on particular simple examples, and only after this discussion we shall come back
to the problem of general physical interpretation of our method which may be called
quasi-isoentropic or of minimal entropy increase.

The author thanks cordially Dr A. Kossakowski for very useful discussions during
the present investigations and his constant help and criticism.
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