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CHARGED IMPURITY CONCENTRATION WAVES IN He II
AS A TYPE OF SECOND SOUND WAVES,
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The set of conservation laws for the Bose superfluid system with Fermi impurities
is derived in exact operator form. The theory of the charge waves phénomenon (waves. of
a concentration of charged impurities generated by temperature waves) in superfluid helium
is presented. A method for its experimental verification -is suggested.

1. Introduction

The behaviour of charged and neutral impurities in superfluid hehum was studied
extensively in the recent years, since Careri’s experiment in 1959 [1]."

The purpose of this paper is to suggest a new method of an experlmental verifica-
tion of the concentration waves phenomenon which. was recently predicted theoretically
for the *He-Hell solutions [2].

Measurements of the change of charge seem to be easier to perform than those, pro-
posed in [2], of measuring the change of He concentration in the He superfluid.

We shall give in this paper a theoretical description of waves of the charged impurity
concentration. ;

The two component quantum hydrodynamic approach enables us to consider many
types of interparticle interactions, especially if we use the exact method of deriving
conservation laws as given in [3]. This gives us the possibility to study a wider class of
components than those in [2]. On the other hand (a) normal component includes all
impurities in HeIlI [1] and (b) normal component (phonon gas) is a carrier of the second
sound. Thus, some connections between thermal waves and motions of any impurities
should exist (as a result of a two fluid Hell model) and we shall derive them.
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2. Conservation laws for two-component system

Consider a system of superfluid bosons (B) and normal fermions (F) with arbitrary
boson-boson, boson-fermion and fermion-fermion interactions. This solution can be
described by the following Hamiltonian (see e. g. [4, 5])

H = Hy+H,+H+6H, = H° +6H,, 1)
where

1 .
Hp = ymn f[A @t (tr) - p(tr)+ o  (tr)do(tr)]dr— iy f@s(t’)dr+
+ 1§ Vi(lr—r' Do (tr)o5(tr") (tr)drdr’, )

=— z J[Azp*(trs) w(trs) +y™* (trs)Ay(trs)]dr—

—Ap [ Op(tr)dr+ % § Ve(lr—=r') Y. 9™ (trs)os(tr)y(trs)drdr’. 3)

'Hit is the interaction between components
Hi = 3 | Vas(lr—r')) [05(tr)0s(tr) +@p(tr)@s(tr)]drdr’". @

The last term in (1) introduces Bogolubov’s sources of particles 7(zr) and n*(zr), character-
istic for the superfluid Bose system [6] and an external scalar potential dU(zr),

SH, = | dr[n(tr)p (tr) +1 (tr)p(tr) + U (tr)e(tr)], ®

and they are given time and space dependent functions.
In Egs (2)-(4) we introduced the Bose and Fermi densities of particles

2(tr) = @ (gtr);  0x(tr) = X ™ (trs)y(trs) ©)

and a total density. operator
0 = 0p+0r 6"
With the aid of Hamiltonian (1) we obtain the equation of motion for the boson
field operator, @(#r), and for the fermion one, p(trs),

io0(r) = — ¥ L (6U—App-+n+
2mg
+ [ [Va(r—ros(tr’) + Vap(r — ¥)op(tr")]dr p(tr), Q)
i0,y(trs) = — A— +OU—-Apyp+

+ [ [Ve(r—r)ae(tr’) + VBF(‘r —r)op(trY]dr y(trs). ®)
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Using Eqs (7) and (8) we derive four conservation laws in the exact operator form. For the:
mass-density operator

0" = mpdp+mpdy ()]
we have the continuity equation
00" = —Vf+imB(<pr1*—- o*y). (10)

For the mass-current density operator

a
Ky

R g i i
J=Js+ =§(V¢+'¢-¢+'V¢)+EZ(Vw“.'w-jw*‘Vw) an

s

we have the conservation law

(7,]"; ey Z T:zﬂ,ﬂ +@015U+
B

+ 3oL 10— 1,0 —1,9). (12)

The symmetric stress tensor T,; has the form (see Appendix of Ref. [7])

‘T;tﬂ = 7;(;)+Ta([!l)s
1 1
TP = —(paps+9sp)+ — E (PPt P v —
mg Mg
B F
""aaaﬂ _Q___ + Q_ .
dmg  dmg

1

0 [ 5VBF(R)

0p(r)op(r-) +

|

0V(R)
" OR

@*(74)08(r - F( )

P (e, Oe(r-)p(rs, S)—l (13)

where

x+1
ry=(tr+ TR .

We define the energy density operator as follows

[} dr(gg’\a) (tr) = H°
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and
oy G
0[e"e) = — Iade l==dhar =—Ik 0,0U —
My Mg
—(if4mg) (9% +71,aa<P+)—h.c.]} i

+ % jdr "{n'(er) [Va(r—r)ep(tr') + Var(r— r)os(tr')]p(tr) = h.c. +

+17 (tr") [Va(r — r)op(tr) + Var(r — r Yop(tr)]p(tr') = h.c.} (14
where energy current I,

I, = IP+1dD,

i 1 1
IP = - 3 0 Z [m_f; (PppP— @ @ 0p) + w2 Z (’»”3?#"/’_1/’+'¢,ﬁﬁ)] =
B ; s
=ML i(qv*q’ — PP + ~1—(w+w — V%) | +
4 m% 22 7,88 SBBY o mIZ? % VBB BBV s
B s
+3 Jd',’ ' [VB(V—"')<P+(“") -m—jf("‘)?’(“")‘-l'
: B ’ P

14 1 ; 1
+Vi(r—r") E p(tr's’) m—ff(tr)w(tr s+
o) = F

+VBF(r—r’)< B(tr) Ja("‘)‘l‘e (tr) — f(n))],

v T

8R

= ¢ (r+)——J ro)e(ry)+

R.R; 6VB
oR

Py, )‘—Jp r (s, s)+

s

BF
-

R (e (r+) Jﬂ(r )+of (r+)—Jﬁ(r ))} 15

Now we introduce the concentration of Fermi particles by the relation

c(tr)g"(tr) = mgQg(tr). (16)
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0, OF can be obtained from (8) in analogy to (10) and then we can find
de@™) = = V. an

If we consider the superfluid bosons, we must add to Egs (10), (12), (14) and (17)
the fifth equation for the superfluid velocity vy derived in a standard way [6] by splitting
the equation of motion for the complex quantity {¢) into two equations: one for the real
amplitude a(zr) and one for the real phase y(tr)

g(tr)) = a- e (18)

{...> denotes the nonequilibrium expectation value with the Hamiltonian (1). For the
superfluid {(g) # 0. From (7) we have

da (Vy)? 1 o
= — 2 SU+Ay— — =
Oadr) 2amg 2myg +is 2a €+8)
—a~?{dR Re X (r, B), 19)

where
X7, v'—1) = L@ () [Vi(r—r') <as(tr)p(tr)) +

+Var(r—r") @e(tr)e(tr)],
{(er) = n(er) exp {—ix(tr)}. (20)

The integral term can be calculated from Eq. (19) in the equilibrium and, if we assume
the so-obtained formula to hold also within a small deviation from the equilibrium [6],
then we find the equation for 0,v,

o (tr) = 0, L V(tr). 1
mp

The essential differences between Egs (12), (14), (20) and their counterparts in [4]
appear in (13), (15) and (20). Namely: (i) the above equations describe an arbitrary two
component system with interactions of boson-boson, V5, fermion-fermion, ¥, and boson-
-fermion, Vpp, types, contrary to [4] where Vg = Vi = Vpgp; (i) formulae for operators
T, and I,, (13) and (15), are exact here and were calculated without the restriction of
[4] that the interparticle forces must be short-range ones.

3. Charge concentration waves in Hell

With the aid of Eqs (10), (12), (14), (17) and (21) we can study the behaviour of a wide
class of solutions. In [2, 4] dilute solution 3He in Hell was examined. In this section
we shall apply the above theory to describe the motion of charged impurities in Hell.

Consider a system of helium ions, “He*, in the superfluid He. In the real case of
small impurity concentration, ¢ < 1, we can neglect the interaction term ¥y in Egs (3)
and following equations. In the opposite case the integral [ [dr dr’ Vyytopy gives us the
unstability of the infinite system of charged particles (if we did not introduce any other
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additional assumptions which preserve the convergence of this integral, as e. g., boundary
conditions). We also put
mF ~ mB =m

in all formulae, which simplifies our relations, e. g.: " = mg etc.

Now we take the nonequilibrium expectation values from Eqs (10)~(17), derive the
formula for pressure, Pd,; = {T,s), and for the energy-current along the same method as
that in [2]. In such a way we find five hydrodynamic equations of motion (for ¢ = <@,
j=< f >, ¢, 0g = {Q&), vy). From this point our considerations are quite parallel to those
of [4] and after passing from (14) to the formula of the entropy conservation law [6],
we obtain a set of five equations (having the same external form as the equations in [2, 4])
connecting together five thermodynamic parameters: o, ¢, v, v,, 0 — where v,(tr) is the
velocity of the normal component and 6(zr) is the local temperature.

We are interested in the deviation of the system from equilibrium when we adiabat-
ically switch of the external scalar potential perturbation 6U(zr). To obtain the response
of the system linear in U, we assume that all thermodynamic parameters vary very slowly
in space and time (hydrodynamic approximation) and we linearize the hydrodynamic equa-
tions by putting: c(tr) = co+c(tr), 0(tr) = 0o+ 060(zr), etc. (acoustic approximation). Now
we can simply obtain solutions (in Fourier transforms) for dc(wk), 60(wk), etc. [2]. Com-
paring dc and 66 we obtain

Js
Co -a—é-
éc(w, k) = 660w, k) s (22)
So = Co S~
dc

where s is the entropy per particle.

Eq. (22) suggests that if we generate temperature waves in our system we obtain
simultaneously the impurity concentration waves. Because impurities consist of “Het
ions, waves of the charge density shall appear. Especially, in nodes of the standing second
sound wave we can observe oscillations of the charge density. We hope that this effect can
be measured, for example, by the capacitor method.

We must emphasize that the sort of impurity ions (i. e. the type of Vg interactions)
does not play any important role in this theory. This is a consequence of the fact that all
therms with arbitrary interactions are included within definitions of the pressure and energy
density which includes <T,,>, Eq. (13), and {J,>, Eq. (15), and any change of the type of
interaction can only modify the pressure (and energy density), but cannot change the
explicit form of conservation laws (10), (12), (14), (19), and thus, cannot change the
final result (22). This suggests that the relation (22) is mainly the consequence of the two-

-fluid-model theory of superfluid helium. Note, that for an ordinary two component
solution, such as Hel with impurities (v = 0), when we put
- Jp = mv,0p, Qp = cQ
into (17) and substract (10) from (17) we obtain
o,c(tr) = —mo(tr)v,(tr)Ve(tr). 23)
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Therefore, if we want to linearize (23) we find that
0,0c = —mpydv,Voc ~ 0(6%) 24)

rather than (22).
This theory directly confirms the conclusion drawn from the famous Careri’s experi-

ment [1], that “foreign bodies” in Hell move with the normal component. We hope that
in a similar way the experimental verification of the charge concentration waves in super-
fluid helium can be also performed.

The author is indebted to Professor Dr Z. Galasiewicz and Docent Dr J. Czerwonko
for discussions and comments.

Note added in proof: If we take into account that the mobility of the ions is very sensitive
to temperature, we can detect stationary temperature waves using ions as probes. The charge concen-
tration might then be calculated from the intensity of the current being detected and the known tem-
perature dependence of the mobility [8].
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