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The measurement of Hall mobility by means of the disk method has in case of low
resistance samples many advantages owing to the lack of current contacts. The well known’
standard method elaborated for isotropic samples, however, cannot be applied directly
in case of samples which exhibit an anisotropy of resistance. The present paper gives a function
for the correction of the influence of anisotropy on the Hall voltage.

The method of measurement of Hall mobility in which the sample has an annular
form or a form of a disk [1, 2] is in many cases more advantageous than the classical
method. This concerns in particular samples with small resistivity. In order to obtain
a measurable Hall voltage in the classical method in case of metallic sample where the
mobility is e. g. of the order of 10 cm?/Vs, the supplying current cannot be less than some
tens or even hundreds of amperes. The heat produced by such a big current and the “1/f”
noise due to contacts may decrease the precision of the measurement and even prohibit
the latter. If this method is applied to the determination of the mobility of current carriers
in low-resistance semiconducting samples, the measurement can be additionally disturbed by
the introduction of carriers through current contacts. The measurement of the Hall mobil-
ity made with the sample in the form of a ring or disk located in an alternating magnetic
field normal to the surface of the sample eliminates these spurious effects since it does not
require external current supply. The electric field in the sample is produced by alternating
magnetic field.

The method of measuring of the Hall mobility in sufficiently thin annular samples
located in a sinusoidal magnetic field B = B, sin w? normal to the surface of the sample
has been worked out by Pohl [1] in the case of isotropic samples. The magnetic field
produces an electric field E which is normal to the radius at each point and thus the cur-
rent carriers move along concentric circles. A Lorentz force which is perpendicular to
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both B and E acts on these carriers in the direction along the radius. Thus a radial Hall
field Ey is produced in the sample which satisfied the following relationship

HB = — 6))

where u is the mobility.
The Hall voltage thus produced between the edge and the centre of the disk is then
[1] equal to
Uy = — + uwB3R? sin 20t, )

where R is the radius of the disk.

In many cases single crystals both semiconducting and metallic exhibit an anisotropy
of resistance. The value of anisotropy can be determined from the measurement of resis-
tivity in the directions in which the latter is maximum and minimum. In anisotropic
samples the distributions of the lines of current induced by the magnetic field are different
than in case of isotropic samples. It is the purpose of the present paper to determine the
influence of the anisotropy of resistance on the Hall voltage.

Let us consider the case of anisotropic samples in which the directions of maximum
and minimum resistivities are perpendicular to each other. Let us also assume that the
magnetic field is weak, i. e., (uB)? < 1, to neglect the influence of B on anisotropy (weak
influence of magnetoresistance). In this case the lines of current will be elliptic and not
circular. The elongation of the ellipses is greatest near the centre of the sample while in
the vicinity of the edges the ellipses gradually become circular owing to the circular shape
of the disk. Such a circular anisotropic sample can be replaced by a fictitious elliptic,
but isotropic sample with constant mobility. To do so one should construct an ellipse
whose area would be equal to the area of the investigated circular sample and whose
semi-axes ratio would be equal to the ratio of the corresponding mobilities of the aniso-
tropic sample:

2 ]
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where pu, is the mobility in the direction of the x-axis and Uy that in the direction of the
y-axis of the circular sample. The (x, y) coordinate system is chosen so that the direction
of maximum mobility is x and that of minimum mobility is y. In such a case:

n=1. 4

We assume the effective mobility p to be the geometrical mean of these two extreme
values: '

i = (). ®

To calculate the field strength E(x, y) at an arbitrary point of the sample one should find
an orthogonal coordinate system (u, v) composed of lines to which the vector E is tangent
at any point and of such lines to which the vector E is perpendicular.
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After analysing the coordinate systems given in literature the authors accepted that

defined by the following transformation rule [3]:

A

©)

2

s
|
2 R
Rl 3 o4
I
= T
Jle W&
Il
N

where

The dependences between the Cartesian coordinates and the present ones are the

following:

Q)

sin u

The v = const lines (Fig. 1) are lines of current while the # = const-lines are quasi-
potential lines. The shape of the lines of current is nearly elliptic. This approximation is

Y

Z/E=n

Fig. 1
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very good for small values of anisotropy. For large values of anisotropy the area boun-
ded by the v = const curve is greater than the area of an ellipse with the same semi-axes
ratio n, whereas the length of the curve does not differ practically from the perimeter of
the ellipse (the maximum error of such an assumption, i. e., that the perimeters of the
v = const line and of the ellipse with the same semi-axes ratio # are equal, is 3.5%).

The electric field E with the components E(E,, E,) produced in an isotropic elliptic
sample by the magnetic field B = B, sin w¢ must fulfil the following conditions:

a) the field may not contain any sources since no electric charge may accumulate at
any point of the sample,

b) the line integral

§E(u,v)-dl= —s%, ®

where S'is the area closed by the integration contour, since the amplitude of the magnetic
field B, is constant in the whole sample

c) the component E, which is normal to the boundary of the sample, i. e., v = v,,
must vanish at this boundary.

In the coordinate system under consideration the vector E(u, v) with the components:

2
E, = — = Byw cos (of) (sin® u +sh? v)* In ctgh v
T

E,=0 )

satisfies all the above-mentioned conditions. The electric field with these components is
thus a curl field induced in the sample under the influence of the magnetic field.

The knowledge of E(u, v) permitted the calculation of Eg(u, v) by means of Eq. (1)
and then the voltage Uy between the edge and the centre of the sample:

Uy = | Eg(u, v)dl. (10)

Consequently:
2 o
4 0B
Uy = — —22- uB — fln ctgh vdv. (11)
T ot
0

One can asign to the closed oval line vy = const (which corresponds to the edge of the
sample) an ellipse such that the shorter semi-axes of the former and the latter as well as
their areas would be equal. In such a case the ratio of the semi-axes of the ellipse is equal
to anisotropy

2 In ctgh v,

"~ [arcctg Gh o) =
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The constant a has been determined by comparing the area of the surface to a circular
sample with the radius R:

8 2
T
and thus
Uy = — 1 uB2R?w sin Qoi)f(wo), a4

where

vo
2 [ In ctgh vdv

flwo) = —wm . @15

The function f(v,) has been calculated numerically. Making use of the connection
between v, and # (Eq. (12)) we have calculated the function f(n) whose graph is shown
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in Fig. 2. For large values of the anisotropy parameter #, i. e. small v, (Fig. 1) f() = 2/1.
In this case one can write:

R%w S
Uy = — e uBg sin 2wt. 16)
4l

The above dependence permits p to be calculated for samples with large anisotropy.

In case of small anisotropy, of the order of several or a dozen per cent, one can make
use of Eq. (2) derived for isotropic samples, since for # — 1, f(y) —» 1 and Eq. (14) goes
over into (2).
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For anisotropic samples the Hall voltage drop is considerable compared to isotropic
samples and the correction for anisotropy is necessary.

The authors are much indebted to Professor T. Piech for valuable remarks and reading
of the manuscript.
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