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The equations of motion for the nuclear magnetic moment in isotropic ferromagnetic
materials in the presence of an oscillating external magnetic field are derived; by making use
of the method of orthogonal operator expansion developed by Shimizu. It is argued that, if
one assumes that the interaction between the nuclear and the electronic spin systems is weak
then the relaxation times and energy shifts can be expressed through the correlation functions
of the electronic spins. '

1. Introduction

Nuclear magnetic resonance in crystals, whose localized electron spins form an anti-
ferromagnetic or ferromagnetic configuration, exhibits some peculiarities connected with.
the strong local magnetic fields which act on the nuclei in these materials. One peculiarity
is the difference in the value of the nuclear Larmor frequency which is about 2-3 orders
greater than that in the paramagnetic state of the same materials. Another peculiarity is
the enhancement of the NMR signal [1].

In a magnetic medium the nuclear spins are coupled by the Suhl-Nakamura indirect
interaction. This interaction causes fluctuations of the local field which give rise to a broad-
ening of the NMR line and a displacement of the NMR frequency in relation to the
one corresponding to the average value of the local field.

Many attempts were made to express the features of the resonance, such as the origin
of the line width, the line width and shape, through the correlation functions of the electron
spin subsystem, but a complete description by means of a single method (e. g. the Green
functions or kinetic equations method) has not yet been achieved.

By using the orthogonal operators expansion method [4] we derive in this paper the
equations of motion for the nuclear magnetic moment in the presence of an oscillating
magnetic field and by taking into account the indirect interaction between nuclear spins.
With the assumption of weak interactions between the nuclear and the electronic spin
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systems the relaxation times and energy shifts are expressed through the correlation
functions of the electronic spins.

In Section 2 the Hamiltonian of the system is expressed in a rotating reference
frame. Section 3 outlines briefly Shimizu’s method which in Section 4 is used in deriving
the equations of motion for the nuclear magnetic moment.

2. The Hamiltonian of the system in the revolving reference frame

Let us consider a system of N sites, each of them having a nuclear spin I; and an effec-
tive electronic spin S ;- The system is in an external, constant and homogeneous magnetic
field H, which is applied along the z-axis, and there is a transverse, rotating magnetic
field with frequency o and amplitude H,;. The Hamiltonian of the system is supposed
to have the form

”’(t) = f;-l-‘#;x-i-‘%;f_l-”él‘ (1)‘
Here, #, is the Zeeman energy of the nuclear (I = ) I;) and electronic (S = Y'S;) spins:
J J

%; = _wnIz_weSz (2)

where w, = y/(H,+ H,) is the Larmor frequency of NMR, y; the nuclear magnetogyric
ALSio . A rdeh .
value, H, = — <—>° is the local field at the nucleus which is produced by its own
1

Tr e #%<(...)
izep 2=l

# ,— Hamiltonian of the electron spin system which includes the exchange interactions,

w, = y(Hy+ H,) — frequency of ferromagnetic resonance and H, — anisotropy field.

Further, 5., is the isotropic exchange interaction energy between “magnetic” electrons,

#,; is the energy of the system in the rotating field H,:

“magnetic” electrons, A4 — constant of hyperfine interaction, <...)o =

H ! L H . o
‘W'I‘f= _')71_2'1‘ I+etmt+I e twt)_ys71(S+euot+S e ;a)t),

I* = I.+il, S* = §,+iS,,
and #g; is the hyperfine interaction:
N N
Hs = A j'Zl I,68,;+A -21 (LS +1y;Sy7)s
= =
where
6Szj =' Szj_<Szj>0'

Let us go over to a reference frame rotating around the z-axis with angular frequency .
This can be done with the aid of the transformation

B - e—im([,+S,)tBreia)(I,+Sz)t. (3)
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In the new reference frame the Hamiltonian becomes

Jf(t) = _(wn_w)Iz_(we—w)Sz_Y£1Sx_7IH11x+%ex+’yfsl'l' o (4)}

To obtain the effect of the enhancement of the NMR signal it is necessary to further change
the reference frame for the electronic spins to an “‘effective” one. This frame has an axis of
quantization which is tilted at an angle « to the z-axis and is arranged to coincide with the
effective static field for the electronic spins in the rotating reference frame. This change can
be done with the aid of the transformation given in [5].

In this frame the Hamiltonian has the form

N
%'(t) = “(wn_w)lz_(n+1)YIHlIx__weSz+'%ex+A Z Izj(ésj_as.’:)'l'

N N
+4 Y LSj+adS)+4 Y IS} ®
j=1 i=1
where the enhancement factor is
Iula Aoo = H, .
n . )51H1‘ o H"I"Ha’ . ( )
o = [{S;D0l; )
wH.

(we . w)z + (‘)’sHl)z '

3. Outline of Shimizu’s method

Shimizu [4] obtained equations for macroscopic variables - by making use of the
method of orthogonal operator expansion. Here orthogonal relations for operators are
defined by

Tr {OI+OJ} = C5,~J

where C represents a normalization factor and O; denotes the Hermitian conjugate
operator of O;. This can be written in the notation used in that paper as

Tr {AB*} = {4|B).
Here {A|, {B| are vector representations of the operators 4, B and |B) is the Hermitian
conjugate to {B|.

The average value of an operator 4 is represented as
4> = Tr {de} = <4lo),

lo> being the vector representation of the density matrix 0.
The von Neumann equation in this notation can be written as

d A
o le(®> = —i#(Dle(®))
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where J2(t) stands for a matrix representation of the time-dependent Hamiltonian' #(z).
Next, Shimizu expanded |go(#))> into a linear combination of orthogonal operators O,
(k = 1,2, ... m) using the projection operator P in the form

m

p= 104> <04l
- N

and then derived exact equations for macroscopic variables from the von Neumann
equation. These exact equations have the form

4o N ORIy
7 Oy = —i (0,0, 041>

Jj=1

—iK0#DS(2, 0) (1 - P)lg)—

0(#)

- dt' O DS, ) (1 - P)A#(1)10;
Zof RS, 1) (-0 D052

k=1,2, m) ©)

where

t A
S(t, tl) = Te—l{;(l—P)x’(f)dr‘

4. Equations of motion for the nuclear magnetic moment

In order to obtain linear equations for <I(¢), <I(¢)> and {I(¢)> Shimizu [4] chose
I, I, I, as Oy, O, and O; in Eq. (9). Then the equations for these variables, up to the
second order in P(f) (to ensure this, it is necessary to use the first or second term of the
expansion of S(¢, t') in powers of #(t), become

: L (o P BeOpry
= KLy = —iKLiAole@)>~ Z fdt A

b=x,y,z 0

KL= P)lod— | dt' (I[P e PP (1 P>
0

(@a=x,y,2) (10)
where
Iy <Il
= 11
Lily &

b=x,y,z



and
Ho=HT+H.
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Here, #¢/ is the Zeeman energy of the system' with respect to the effective field in the

rotating frame:
H = —AL—(n+Voyl, 4 =o0,~0)
He= —0S +H
and V is
V=3V, V= i‘l o™ =-10D
m i=

where the following abbreviations are used:

NN

A
;' = 7(s,.' +0dS?), Q) = A(6S;—aS)), e (S +adS3).

The initial condition is chosen in the same manner as in [4]:

e"ﬁ#’o 1
= O e R — = —],
¢ =0 = 5w (ﬁ | kT>
Let us consider the kernels:

LIVe o071
Kab(t—l,) = < | \ | b> (aa b= X, Y, Z)'
Ay
It can easily be checked that all K,(t—t’) are real.
In the usual notation K,(t—t") have the form

1 2 , p o
Tr isto(t—t') Ia’ VY —iHo(t—t") Vv, I
dGLy Z GO Wegh)
154

Kat—t) =

with the help of Eq. (13). It is convenient to use the notation

1
<L

K, = z Tr {°[I*, V?]e ' [VY, ']}
14

(v = +1,0).

(12)

(13)

(14)

(15)

(16)

a7

(18)

The connections between K,,(u, v = +1, 0) and K(a, b = x, y, z) are given by Eqs (2.32)

in [4].
The following relations are useful in calculating Eqs (18):
[Ik, 7] = 4515
where the values of 4} are as follows:

b=—w AZIl=p—y; A)-si=17.

(19)
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It can be proved [6] that

wf ft1u+'y —z.# t Zpu+7 2 -—l}.o)tIlc

(@ = A+ +1) 0%, (20)
where the coefficients p4*” and g¢* are given in Table L.
TABLE I
Al 4
(e 1 o = \ 1 0 ~1
A v
1 3(cos0+1)| —%sin6 | % (cos 0—1) 1 | $(os6+1) |4sin0 | §(cos0—1)
o sm0 “cos 0 " sin 6 0 —sin 6 cos 0 —sin 0
—1 $(cos0—1) | —}sin6 | $(cosO+1) | —1 |}(cosO—1) | 3sin® | & (cos6+1)
where
tan 6 = M .
Y|
By making use of .these relations the kernels (16) become
—N ,
Kvt = : ) AuAv u+y ,)c. --Mtotx
13 ( ) <1v|Iv> z Z v
759 A.x
x Try {11777} Trs {05 (9057} @1
where
Qg_y)(t) — eiafetQ(—'y) o i et
Now, let us consider the inhomogeneous terms of Egs (10):
. t
D(t) = —iKLIV(1—P)ig) — | df'{L|Ve ¢ P (1-P)|o} 22
0
(a =x,y,2).
With the help of Eqs (15) and (16) this term becomes
LIVil) V|Ib>
D) = —iKL|V|e) +i Z Ipro—
ALy
b=x,y,z
- Jdt (LVe 0Py 4 Y f At K () <Ipo (23)

b=x,y,z 0
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where

Ippo = {Iple) = Tr {ol}.

The first and second terms of the r. h. s. of Egs (23) are equal to zero, and the third term
can be written as

t
D(n) = —05 dt [ [1,, V]e™ ™, V) =

t
= — ¥ [df<[e"" 1, I"]Q Ve, I'QTYy,, 24
7 0
It is convenient to use the notation

1
Iz=10; Ix=%(Il+I—1); Iy=§(11_1—1);
i .

1
D;(1) = Dy(1);  Di(H) = 1 (Di(®+DL,(); D;(t)=2—i.(Di(t)—D‘_1(t)); (25)

t

D) = — T [ dr<[* [P, 110 e, 7T, (26)

7Y 0

By using Eqs (19), (20) Eqs (26) assume the form

t
D) = ~ 5 [dre™ " Ak g (107", Q] =
V¥

. ’v
ke

o

di'e™ " A QUK 0@ ()QE 0~

I
I
DR g
Oy =

oy
e <

=IO (1)) 0). (27
By making use of Eqs (16) and (23) Eq. (10) becomes

a t
2w = Z Qu IOy~ Z f WKL) Q-0 +DD,  (28)

b=x,y,z b=x,y,z 0
(a=x,1y,2)
Qxy = _'ny =4, Qyz = _"sz = (’7+1)a)11: ‘Qxx = sz =S ny = sz = ‘sz = 0.

If we assume that the “memory” of the kernels K,;(#) extends only over the finite time
interval 0 < t < T,

Ku) =0if t > T, (29)
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then Eqgs (28) reduce to

d 1 1 1
7 L)) = (A - 5,:;) L@ — T KILD) —<L:p0) - T (L0 —<1.>) +Dx(0),

Xz

1
( O = — (A s T_> KLY+ ((ﬂ+1)w11

XY, yz,

1 : 1
—_, _,1'-.— <Ix>0 + T_ <Iz>0 +D;(t)’

Xy yz

d 1 1
T L) = — (('I +Dw;— 5,;) I(B)>— T KL®> —<1>0) -

1
= 7 (LY=L +D3()

Xz

where the relaxation times are given by

1 1 1
— = | dfKy (), —=—(@@a=x1y,
T,,,, f o) =g @=xy2

0
and we have utilized the relations

ny(tl) = - yx(tl)a sz(t,) = sz(t’)’ sz(t,) = _Kyz(t,)°
Let us turn to the relaxation times 7,,. By using the notation
Cy(®) = Trs {Q°(DQ"} (&1 = £1,0)

for the correlation functions and

Ja(@) = Oj dte™c,,(f)

for their one-sided Fourier transforms, we obtain
1 —N

T, I

A AP g Tag {157} -y (= A0).

757
).

Eqs (27) can also be written in the form

Dy(0) = =N Z f dt'e™ (A4 pi U +1) = <I50) <105 ()27 Do+

HTel{07 (1), 25 o)+
A§piao<I7o<[Q5(t), Qi10 +
S 117;—1 2 +D)—=LT50) <[5 (), Q5 Do~
—T20{Q5 (), 27 3)0))-

= )<1,(t)> IO

(30)

(3D

(32)

(33)

(34)
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If we introduce the retarded double-time Green functions

GE(Y) = CCAWBODY; = —ib(t) <[A®X), Bl+os

=]

1 2 ’
GH®) = 5- f G (@) dos,

=0

G (w) = KAIBYYS & OJ? G/ (¢ ar
then D}(c0) becomes
D, () = —iN ; A g (AT +1) = <I5>0) KQT 107 D) Zawr +

+<LT ;00 £KQ5 |Qj+ PIMFIE
+ABPE5<I5 0 KLQFIQDD awr +
FAL 57 g (AT +1) = T50) KKQF 1950 Z i —
—{Liz0 KLQF 195 O Law)-

5. Conclusions

Eqgs. (30) represent modified Bloch equations for an isotropic ferromagnet, referred
to a coordinate system rotating with the driving field. It should be noted that the behav-
iour of the nuclear spin system is described by four independent relaxation times T, T,

1 1

T,, Ty, and two energy shifts — , —, and all these values depend on three frequency
xy yz )

parameters of the system: w, (n+1) @y, and w,. The system here under consideration

bas been examined by Bariachtar ez al. [3]. With the assumption of weak interaction
between the nuclear and electronic spin systems the equations obtained in that paper
are less accurate, because they describe the changes in time of the transverse and lon-
gitudinal components of the nuclear spin moment independently from each other. There
are only two relaxation times and one energy shift in the equations obtained by Bariachtar
et al., and these quantities are expressed through the correlation functions of the electron
spin system, in a manner quite similar to that in the present paper.

The authors would like to express their thanks to Dr A. Pawlikowski for helpful
discussions concerning this work.
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