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The system of equations for the average values of Bose or Fermi amplitudes:and kinetic
equation for average value of particle number operator are derived by means of the none-
quilibrium statistical operator method. The connection of this method with the linear re-
sponse method of Kubo is discussed.

1. Introduction

Any small subsystem of a system of many particles interacts with its environment.
(We have in mind such subsystems as a Brownian particle with its surrounding, a quasi-
particle or a collective mode.) Since the environment has many more degress of freedom
than the subsystem, it is possible to consider it as a thermal bath in which we embed the
small subsystem. In general, the subsystem does not have any definite temperature.

Because of the very complicated character of interactions, we can assume that the
influence of the thermal bath leads to a dissipation of the subsystem energy and to ap-
pearence of random forces influencing this subsystem. Thus the subsystem exhibits some
features of statistical systems saving at the same time some properties of mechanical
systems. This means that the random forces and terms with damping occur in the equation
of motion for dynamical variable operators of subsystem. In this way it is possible to
consider for example some collective mode (i. e. spin wave) as a form of Browman motion
under an influence of other degrees of freedom [1].

It is possible to find the damping in a different way, with the help of an equation of
motion for correlation functions of dynamical variables of a subsystem (e. g. Green
function method), or equation of motion for average values of these dynamical variables.
A very convenient method of derivation of such equations is the nonequilibrium statistical
operator (NSO) method [2]. This method is based on Bogolubov’s idea of the existence of
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a hierarchy of characteristic times and the reduction of the number of parameters describ-
ing a system.

For the kinetic stage, the Hamiltonian of our many-particle system can be written
in the following form

H = Hy+H;,,
where
Hy = Egaa,+H;
is the Hamiltonian of the subsystem and thermal bath,
Hi = a;' V" +Va

is the operator of interaction of the subsystem with thermal bath, a;and a;" are the annihila-
tion and creation operators of particle i. Operators ¥; and V; are connected with the
variables of the thermal bath only. Suppose that at the considered stage of an evolution
it is possible to describe the system using a set of average values of operators {a;)’,
{ait)', {n;)" and {(Hr). Decomposition of the Hamiltonian into the free part and inter-
action is also connected with the stage of evolution of the system [3]. In the framework
of the NSO method, eliminating the influence of the thermal bath in the second order of an
interaction Hj, (we require the smallness of interaction between the subsystem and the
thermal bath) leads to an equation of motion for the average values of our set of operators.
Now this influence of thermal bath will appear as an effect of friction of the particle in the
environment, i. e. as a dissipation of their energy..

Exactly the same method of derivation of the equation of motion for {a;)’, {a;")',
{n;)" was used already in [4], where equations for <a;)’, {a;")' were called Schrédinger-
-type, as they exhibit mechanical and statistical features. The authors considered a small
subsystem in thermal bath. This subsystem consisted of non-interacting particles of some
kind (e. g. excitons). The particles of another kind formed the thermal bath (e. g. phon-
ons). The relaxation of the subsystem is connected with the interaction of different kind
of particles. In our work the thermal bath consists of the same kind of particles as those
of the subsystem and particles of other kinds or impurities. In such a way it is possible to
extend the class of systems which can be considered.

Section 2 is devoted to the derivation of the Schrddinger-type equations and the
kinetic equation for {n;»’. In Section 3 we shall give some examples and in Section 4 we
shall consider connection with the linear response method of Kubo.

2. The general theory
Let us consider the system of N particles with the Hamiltonian

H =Ho+V, 0))
where
%0 = Z Eia;'ai.
i
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E; is one-particle energy, a;i” and a; are creation and annihilation operators of fermions or
bosons, ¥~ describes either the interaction between particles or particles with impurities.
Hamiltonian (1) is equivalent, to terms of the order of N-!, to

H = Ho+Hiy, @

where
H, = Ea; a;+Hyp, 3
Hyy = a/ Vi" +Va, @

and the notation used is the same as that in the Introduction. EXami)les of construction of H
will be given in Section 3.

According to the NSO method we construct the statistical operator of the none-
quilibrium system g(z, 0) with the help of the quasiequilibrium operator

Qq(ta 0) = €Xp {—S(t: 0)}9 (5)

where
S(t, 0) = Q)+ Y. P,.F,(), (6)
Q1) = InTrexp {-), P, F,(D}. @)

Let us take the Hamiltonian of the thermal bath Hr and operators a;, a;f, n; = aita;
describing the nonequilibrium state of subsystem as the operators P,,. This choice of the
set of operators P, enables us to give a dynamical description of the system. The functions
F,(t) are thermodynamical parameters conjugated to <P, in the sense of nonequilibrium
statistical thermodynamics. We denote the parameters corresponding to <{a;’, <a;'>
and <{n,Y' by fi(t),f;(t) and Fy(t) respectively. The mean value of {Hy) is connected with
the reciprocal temperature of thermal bath B.
The invariant part of g,(t, 0) gives us the nonequilibrium statistical operator of the
system

0
ot,0) = & [ dt,ee" Lo (t+1,,0), ®
and & — 0, when the thermodynamical limit is taken. Here L denotes Liouville’s operator
1 . #H - iH
iLA = %[A, H], %A =c¢#% Ade 7 .
i
Integration by part of the right-hand side of Eq. (8) gives

o(t, 0) = g,(t, 0)— j dt,e™e 't‘L{lngq(t+t1, 0)+

(i +1Lo) o (t+1y, 0)}, ©
oty
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where
_ 1 A 1
lLoA = l—g [A, Ho], 1L1A = l_ﬁ [A’ Him]'

Note that our set of operators P, satisfies the relation [P,,, Ho] = Y. tysPs, Where o, are
c-numbers, $O k

do,(t, 0)

rrami iLog(t, 0)=
N et0) (1
- Z 6<Pm>: Tr {i_f—l [Pm’ Hint]g(t: 0)} . (10)

m

We are interested in the approximate form of g(z, 0), linear in H;,. Since the second
term under the integral (9) is proportional to Hj,, the evolution of the system can be
considered to be free in our approximation. With the help of (10) we obtain for o(z, 0) an
integral equation, which can be solved by iteration. At the first step, limiting ourselves to the
system with

(Vg = Tr (Vie,(t,0) = 0 11)
we obtain
0
1
Q(t9 0) = Qq(t’ 0)_ 171- J‘ dtleetl[eq(t’ 0)9 Hint(tl)l (12)

where we used the relation
elog (t+1,,0) = g t, 0).

The condition (11) is equivalent to the assumption of “randomness” of forces V;, Vi,
We require that average values of operators P, satisfy the conditions

Tt (Pyo(t, 0)) = (P = (Pu)y (13)

which can be used for the determination of parameters F, (). Averaging operators P, with
the statistical operator (12), and the differentiating them with respect to time, we obtain

the kinetic equation
P>
ih <6t> = E il P’ +

k

0
1
+ y f dt; € {[[Pms Hinels Hidt) D5 14
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For our set of operators P, we obtain from Eq. (14) two following equations

0
3 ap’ _ . 1 s
ih F Y ELa)" + "y J dtie x
X <[[ai9 Hint]a Hint(tl)]>;9 (15)
0
on)t 1
<{,;tl> =T f dtye*'{[[n;, Hinds Hinlt:) Do (16)

and the equation complex conjugate to (15). In the following we assume that
AZOE AN AOVELY

exp (—BHy) > de-
" Trexp(—fHr)

notes an average over equilibrium distribution of the thermal bath. Introducing the
Fourier transforms of correlation functions

which is usually fulfilled due to conservation laws, <...) = Tr (

¢ d
OV = J 5 €NV (172)

AZOVE J %C—: A AP N (17b)

and calculating the double commutators in Egs (15) and (16) the kinetic equations can be
written in a simple form

it K82 (B, a(E) Ca'—iba(E) (oY, (19)
andt o
B2 B <y =) 19

where

©
do efie 1
AE) = —P | 2wy, —

-

(20a)

1 .
1E) = 33 VD po=p (8 F 1), (20b)
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and

7y = (@EFD
is the mean number of particles (bosons or fermions) in the state i. From Eqgs (20a) and
(20b) it follows that the energy shift A(E;) and damping y(E;) are connected by the Kra-

mers-Kronig relation
0
h )
AE)= ——P | do———=.
E)= -5 J — @
The equation (18) has both statistical and mechanical features, so following [4]
we call it a Schrédinger-type equation. This equation differs from the corresponding equa-
tion in [4] by the definition of “random” forces V;, V;". Note that equation of the form

(18) and (19) has been derived for the anharmonic oscillator by Lax [6].

3. Examples

i) Let us consider an interacting phonon system. In this case the particles of subsystem
and the thermal bath are of the same kind. The Hamiltonian of the system is

Ho = %wgng, (22a)

v = 0 ;g V(Qi, @2, Q3)Ag, 49,40, (22b)

where w,, are frequencies of phonons, @ = (g, ), g is a wave vector, j is the polarization
and phonon mode index, 0 =(—q, /), (01, Qs; Q3)Tdescribes the matrix element of
three-phonon interaction, 4y = ag+ag and ag, a,are creation and annihilation operators
of phonons. In this case the subsystem consists of one phonon mode @, the other phonon
modes play the role of the thermal bath. Let us consider an equivalent Hamiltonian H
which can be constructed using (22)

H = Hy+H;y

where

Hp= Y wpnp+ ) V(Py, Py, P3)Ap, Ap,Ap,, (23)
P*Q Py,P2,P3%Q .

Hint = a&- VQ+ + VQaQ,

VQ =3 Z V(QaPI’ PZ)AP1AP2'

P1,P2%+Q
For the Bravais lattice with (V) = 0, after some algebra, we obtain

9<ag)’
ot

f
i = (g +4(wp)) {ag) —i 3 Ywe) {ap)', (24
<ng)’

5 = V@) Kng) ~ny), (2%
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and the complex conjugate equation to (24). For A(wg) and y(wy) we find

0

1 —it—i((o +ie)
A(COQ) e ﬁ-lm f dtle # ° <[VQ+, VQ(tl)]>’ (26)
0
2 —it—l(a)g+ie) +
00 = 2 Re [ e g, vy, e

- 00

These expressions were obtained in a similar manner in [1], [7] and [8]. They coincide
with ones derived from self-energy operator of the retarded Green function K Ao(t);
A§(21)>>. Egs (26) and (27) may be used for the study of attenuation of sound in super-
fluid helium dielectric crystals [9].

i) As a next example we shall consider systems for which operator V; appearing
in Eq. (4) can be written in the form

V=2 Viay
k
where V3 do not involve operators a and a+. This is the case of scattering of electrons

by impurities with an inner degrees of freedom. In this case correlation functions 17
can be approximated as follows

FOV> = TR OVl ) ~ T Vit 6™,

Then instead of Eq. (20) we obtain

A K do Plio+E _

A(E) = E n.P J ~27z <Vkiv;c;',->w h“w E+E
L k

k -

and

1\ 7
WE) =+ Z = Vi pomnimne
% i

The correlation function {Vy; Vi) describes fluctuations of scatterers. As an example
let us take conduction electrons interacting with the magnetic impurity. The Hamilto-
nian of the systems is

Z i 1 : :
'% = 8k181Cl:-181Ck151_ 2—]\]: Jklkzs. Gs1szclj.;s1ckzs2

k1,51 kisy
k2sz

where C,;Lm, Cp,s, are operators of electrons with momentum k; and spin s, ¢ is a vector
with Pauli matrix components. Here the subsystem consists of an electron with momentum
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¢ and spin s, the rest of the system forms the thermal bath. The equivalent Hamiltonian
is of the form (2), where
Hi, = CLV.z +he.
and
+ 1
Vqs e quls. asanckxh'

2N
(k1s1) * (g5)

The Hamiltonian of the thermal bath is

1
2N
(k1s1) *(gs) (k1s1),(k252) * (gs)

= + ) .
Hp = 8k1Ck151Ck181 - kakzs Gswzckmxckzsz‘

If we do not make any further approximation we obtain formulas for 4(e,) and y(e,) by
simply replacing in (20a, b) Vi by V. A further simplification can be made by decoupling
the correlation function in the manner mentioned above, taking into account the symmetry
of the system. So finally we obtain

3 ”— p + — eblio- k1)
AE) = — — g J P | 22(8*S Dp
(3q) 8N2 I llkll O J < >m ho—e +3k1
(k1s1)#(gs) -0

and

n, _
'y(sq) Sth Z Iqu1!2%<S+S >fiw=zq-zk1°

q
(k1s1)* (as)

These equations relate the energy shift and relaxation time 7, = y~1(e,) of conduction
electrons to the fluctuations of the magnetic moment of the impurity [10].
iii) The last example concerns two-particle interaction of magnons [11]

H = %ekal:ak'l' Y sk, kas ks, ky)A(ky +ky—ky—kgag,ag, %

ki1,k2,k3,k4

X ay,ay, +h.c.

The Hamiltonian of the subsystem and thermal bath is

Ho = Sqa;aq + 2 WS(klﬂ kz; k3, k4)A(k1 + k2 - k3 - k4)a’:a]:;ak3ak4 +h.C.

kikokska+q

and interaction between them is

H, = a; {2 Z vs(q, kas ks ky)A(q +k2—k3_k4)al:;,ak3ak4} +h.c.

kakska+q
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We calculate the relaxation time assuming that the evolution of the subsystem is de-
scribed by the free Hamiltonian

H(o) = Z sknk.
k

Then we have (¢f. [11])

1 16
—_—= = lws(q, ka; ks, k4)|2A(‘1+k2—k3_k4)X
t(e) mwh : ;

kakaksa+q

X 5(84 +8k2 = 8"3 —_ 8]“) {—’;kz(l +Zk3) (1 +ﬁk4) - (1 +;l-kz)ﬁkgﬁk4}'

4. Connection with theory of linear response

Now we shall show that equations similar to (18) can be derived from the linear
response theory of Kubo [2]. Let us consider a linear response of the phonon system
which we have already considered in Section 3, for an external disturbance of the form

Ht = zFa(Xi; t)uiaa i= 1’ sees N, o= 13 2’ 3:
ia

where X; is the radius vector of the i-th atom and #; describes the displacement operator
of this atom. From the linear response theory it follows that

(o' = § dty(aglt); H, 1))y =

=3 T At FL X 1) agld); ultD)Y

i, —o0

Now we expand the displacement operator u; in plane waves, introduce the Fourier trans-
form Gy(w) of the retarded Green function {<ay(t); ag(¢')* >>" and neglect mixing of po-
larization. Then

d .
{agy = J dt,Fy(t,) I _é% e~ TG (0 —i8), (28)

where

Fy(ty) = Z F(X,, f)e™i1" % \/_ZZCI?V—(D_ >
(]

i

eq is polarization vector and M is the mass of atoms. In the pole approximation the Green
function is equal to

Golw—ig) = (0—Bg—i3p(wgp) ™" 29
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where
Bg = wg+A4(wg).

Inserting (29) into (28) and integrating over w we get
t
(ag)' = —i _j‘w dt,Foft,)e 0~ me=C~t)rwo), (30)

The measured quantity {a;)’ is given by a linear combination of {a;")' and <{a,)". In ex-
periments with sound attenuation one introduces into a crystal a single short-duration
(relative to theti me taken for one round trip of the pulse in the sample) pulse of stress
into a solid, normal to two parallel faces of the sample. The resulting multiple reflections
of this pulse from the two parallel faces indicate how rapidly, in term of time or distance
traveled, do the successive echoes decrease in amplitude. Thus we observe the system
after a time much longer than the duration of the impulse [12]. We can assume that
Fy(t) ~ 6(t—r)where 7 denotes the moment of switching on of the external field. Differen-
tiating Eq. (30) with respect to time 7 we get
ag

ih =28 = hEo(0) +(hog~iky(g) (o). 31)

Equation (31) describes the behaviour of the system after a time much longer than the
time of transient processes, but not too long (we make a pole approximation). In such
a time interval the system is characterized by average values of ag, aé’ ,ng, Hy and equa-
tions (18) and (31) have the same form. But there are considerable differences between
them. In Eq. (31) the forces F(¢) are fixed, while Eq. (18) describes the evolution. This
perturbation is in some sense ‘‘self-consistent” for the parameters f(z) being deter-
mined from (13).

~ The authors are very obliged to Professor D. N. Zubarev and Dr A. L. Kuzemsky
for many valuable discussions.
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