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The density of states and its spatial distribution in thin films are considered as a uni-
versal function determined in the same form for phonons, electrons, and magnons. Detailed
calculations are given for films with simple cubic crystallographic structure and w1th (100)
orlentatlon of the surfaces )

- 1. Introduction

In the case of ‘thin films we may distinguish two kinds of thermodynamic mean
values:

1) the thermodynamic mean values averaged on the whole sample with respect to
each position of an atom in the crystallographic lattice, and

.- 2) the thermodynamic mean values referring to a lattice point, which corresponds to
the spatial distribution of a given property.

Calculations of these values may be carried out using a functlon of. dens1ty of states

e. g. [1] which is determined as follows
yAnN2

o) = - z 8~ B o)

aith

and its spatial distribution is defined by (¢f. [2])

yAnN2

G(E, v) = 1% Z (T,)°6(E—E%) @
og).th
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which leads to the dependence of density of states on the position of layers in a film. Of
course, the average value of (2) with respect to v results (1). In the formulae (1) and (2)
E denotes the energy parameter, E% are the energy eigenvalues belonging to the state of
the wave vector h(he (1, N?)) of the mode 7(z € (1, n)); o (x€ (1, y)) labels the polariza-
tion directions and A(4 € (1, 4)) refers to the spectrum branches or bands. T, (e.g. [3-5])
denote the wave amplitudes of a quasiparticle in the direction perpendicular to the sur-
faces of the film in the v-th monoatomic layer (v e (1, n)).

The function G(E, v) expresses the spatial distribution of a physical quantity P as
follows

PO = [ S BGE VIE. @)

The density of states and its spatial distribution are a simple superposition of densities
connected with the three directions of polarization and with various bands. The density
of states belonging to a given band is calculated here by means of the Fourier representa-
tion of the J-function.

2. Energy' eigénvalues and perpendicular wave amplitudes

In our detailed calculations we consider a homogeneous thin‘ﬁll_m with simple cubic
crystallographic structure. We assume that the z-axis is directed along the film thickness
and the xy-plane is oriented in the direction of the (100) surface of the film. In general,
the energy eigenvalues e.g. [3-5] can be written in_the following form

E% = —E%+E* (sin2 % sin? 9 gin? hL“) @
A\ 2 2 2
where the scaling factors E3* and E** are determined by the physical considerations.of the
problem in question. The parameter E3* corresponds to the constant energy and plays
the role of a scaling term in superposition of densities. The parameter E** is connected
with the characteristic features of the problem in question such as the bandwith, the sound
velocity, or the effective mass of magnons.
The parameter o, is interpreted as the third component of the propagation vector
of the waves in question and it is connected with the perpendicular wave amplitudes T',,.
In the case of thin films a, runs over a discrete spectrum of values, which is determined
by the difference equation [3-5]

Tv—1,1+T;,+1’,;2 COSs at’_rw = 0 (5)
with the boundary conditions
(K—=2cos o)y, + T, =0

(K_2CO-S at)j;lt—!-];t—lt =0 (6)
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and with the orthogonality relation
Z TVtTvr' = 51:1:". i (7)
? .

The constant K describes the anisotropic properties of the boundary surfaces. From the
physical point of view the constant K is determined by various effects such as the inhomo-
geneity of electron density, the different spacing between atoms in the surface layers and
atoms inside the film, the interactions with the substrate, the oxidation of surface layers.
The 1elations between Kand parameters having a concrete physical meaning are given in
paper e. g. [3-5],-in which the problems are discussed in detail.

“The solution of (5) can be written in an analytical form e.g. [3-5]

+1 -1
T,, = A,cos| o, { v— o + e=1) ®
2 2.
for the volume modes 7 e(1,n) if |K|<<1, for the volume modes © €(2,n) if
1 n+1
< K| < —+-l-, and for 7 € (3, n) if |K| > 1 ;
The surface modes are described by
+1 ;
Tl_Alchal[v— n-z—], K| =1 e
and
n+1 n+1 :
T, = 4,5ho, (v— ) st (10)

where 6, = ix; and o, = in,. The normalization constant A, is expressed by
A, = \/2 [n+sin (nx,) cos n(t—1) sin~ta,] /2 (8)
for the volume modes, and
= /2 [n+sh(no,) sh~1g,]-1/2 ©)
Ay = /2 [n+sh(no,) shlg,]12 (10"

for the surface modes.

In the case of arbitrary values of K the parameters o, (K) can be calculated only
numerically. Table I contains the values of «, for some values of K and for certain film
thicknesses. The sign “—* before the numerical values means that this value refers to
the surface state. The parameters «, for negative values of K are given by the following
relation

oc,(—K) = ﬂ—an+1—t(K) (11)

which is valid for the both, volume and surface modes.
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TABLE I
Parameters &, for certain values K and » ’
é\K 0.2 0.3 0.5 0.7 0.8 0.9 095 | 0.98 0.99 1.01
n=2
1 0.9273 | 0.8633 | 0.7228 | 0.5548 | 0.4510 | 0.3176 | 0.2241 | 0.1415 | 0.1000 | —0.1000
2 1.9823 | 1.9283 | 1.8234 | 1.7213 | 1.6710 | 1.6207 | 1.5957 | 1.5809 | 1.5757 | 1.5656
n=3
1 0.7093 | 0.6664 | 0.5678 | 0.4430 | 0.3630 | 0.2574 | 0.1823 | 0.1154 | 0.0816 | —0.0817
2 1.4707 | 1.4203 | 1.3180 | 1.2132 | 1.1592 | 1.1040 | 1.0759 | 1.0587 | 1.0530 | 1.0415
3 22901 | 2.2603 | 2.2057 | 2.1572 | 2.1352 | 2.1141 | 2.1041 | 2.0982 | 2.0962 | 2.0925
=5
1 0.4859 | 0.4632 | 0.4067 | 0.3274 | 0.2725 | 0.1963 | 0.1401 | 0.0891 | 0.0631 | —0.0634
2 0.9855 | 0.9513 | 0.8758 | 0.7887 | 0.7379 | 0.6868 | 0.6583 | 0.6406 | 0.6344 | 0.6221
3 1.5042 | 1.4712 | 1.4066 | 1.3440 | 1.3139 | 1,2848 | 1.2705 | 1.2621 | 1.2595 | 1.2538
4 2.0404 | 2.0160 | 1.9719 | 1.9335 | 1.9161 | 1.9000 | 1.8924 | 1.8879 | 1.8864 1.8835
5 2.5880 | 2.5753 | 2.5534 | 2.5355 | 2.5275 | 2.5202 | 2.5165 | 2.5145 | 2.5140 | 2.5125
o n=10 - | e
1 0.2735 | 0.2655 | 0.2437 | 0.2075 | 0.1785 | 0.1334 | 0.0971 | 0.0625 | 0.0445 | —0.0450
2 0.5484 | 0.5343 | 0.4980 | 0.4463 | 0.4119 | 0.3691 | 0.3435 | 0.3264 | 0.3204 |  0.3077
3 0.8262 | 0.8082 | 0.7665 | 0.7165 | 0.6885 | 0.6588 | 0.6437 | 0.6345 | 0.6314 | 0.6252
4 1.1072 | 1.0880 | 1.0471 | 1.0047 | 0.9834 | 0.9626 | 0.9524 | 0.9464 | 0.9445 |  0.9405
LS 1.3913 | 1.3728 | 1.3366 | 1.3023 | 1.2862 | 1.2710 | 1.2638 | 1.2595 | 1.2581 | 1.2553
6 1.6786 | 1.6621 | 1.6315 | 1.6045 | 1.5924 | 1.5811 | 1.5758 | 1.5728 | 1.5718 | 1.5698
7 1.9683 | 1.9547 | 1.9303 | 1.9097 | 1.9007 | 1.8925 | 1.8886 | 1.8863 | 1.8856 | 1.8843
8 2.2600 | 2.2496 | 2.2314 | 2.2167 | 2.2104 | 2.2045 | 2.2017 | 2.2001 | 2.1997 2.1986
-9 2.5533 | 2.5459 | 2.5340 | 2.5247 | 2.5203 | 2.5165 | 2.5151 | 2.5140 | 2.5136 | 2.5130
10 2.8471 | 2.8436 | 2.8376 | 2.8327 | 2.8308 | 2:8289 | 2.8281 | 2.8279 | 2.8275 | 2.8274
) n=20
1 T0.1462 | 0.1438 | 01368 | 0.1368 | 0.1234 | 0.1108 | 0.0876 | 0.0660 | 0.0312 —0.0321
2 0.2924 | 0.2879 | 0.2748 | 0.2519 | 0.2330 | 0.2045 | 0.1842 | 0.1689 | 0.1632 | 0.1561
3 0.4390 | 0.4325 | 0.4149 | 0.3874 | 0.3680 | 0.3436 | 0.3295 | 0.3204 | 0.3173 | 0.3110
4 0.5858 | 0.5779 | 0.5574 | 0.5290 | 0.5114 | 0.4919 | 0.4816 | 0.4754 | 0.4733 | 0.4692.
5 07332 | 0.7241 | 0.7021 | 0.6750 | 0.6597 | 0.6440 | 0.6361 | 0.6314 | 0.6298 | 0.6268
6 0.8810 | 0.8712 | 0.8490 | 0.8238 | 0.8107 | 0.7978 | 0.7915 | 0.7878 | 0.7866 | 0.7842
7 1.0292 | 1.0192 | 0.9974 | 0.9747 | 0.9635 | 0.9526 | 0.9475 | 0.9445 | 0.9435 | 0.9416
8 1.1780 | 1.1679 | 1.1472 | 1.1268 | 1.1171 | 1.1081 | 1.1037 | 1.1012 | 1.1004 |  1.0987
9 1.3273 | 1.3175 | 1.2970 | 1.2798 | 1.2717 | 1.2638 | 1.2601 | 1.2580 | 1.2574 | 1.2559
10 1.4769 | 1.4676 | 1.4498 | 1.4338 | 1.4264 | 1.4198 | 1.4149 | 1.4166 | 1.4143 | 1.4131
11 1.6270 | 1.6181 | 1.6021 | 1.5881 | 1.5817 | 1.5760 | 1.5733 | 1.5719 | 1.5713 |  1.5703
12 17776 | 1.7695 | 1.7549 | 1.7426 | 1.7371 | 1.7324 | 1.7300 | 1.7288 | 1.7282 1.7275
13 1.9284 | 1.9210 | 1.9081 | 1.8976 | 1.8929 | -1.8887 | 1.8867 | 1.8858 1.8854 | 1.8847
14 20794 | 2.0728 | 2.0616 | 2.0528 | 2.0488 | 2.0451 | 2.0437 | 2.0427 | 2.0424 | 2.0417
15 ©2.2308 | 2.2251 | 2.2157 | 2.2080 | 2.2048 | 2.2018 | 2.2004 | 2.1997 | 2.1994 2.1989
16 23823 | 2.3774 | 2.3697 | 2.3635 | 2.3608 | 2.3583 | 2.3574 | 2.3567 | 2.3563 | 2.3561
17 25337 | 2.5303 | 2.5241 | 2.5119 | 2.5166 | 2.5151 | 2.5142 | 2.5135 | 2.5136 | 2.5129
18 26857 | 2.6827 | 2.6784 | 2.6747 | 2.6730 | 2.6715 | 2.6710 | 2.6708 | 2.6705 | 2.6702
19 28376 | 2.8356 | 2.8328 | 2.8301 | 2.8293 | 2.8283 | 2.8279 | 2.8276 | 2.8273 | 2.8276
20 20805 | 2.9885 | 2.9872 | 2.9860 | 2.9852 | 2.9852 | 2.9847 | 2.9845 | 2.9846 | 2.9844
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Table I — continued

K

T\\ 1.1 1.4 1.6 1.8 4 6 10
1 —0.3149 | —0.6224 | —0.7565 | —0.8671 | —1.5667 | —1.9251 | —2.3894
2 1.5210 1.3693 1.2662 11593 | —0.9625 | —1,5667 | —2.1848

n=23 )
1 —0.2589 | —0.5213 | —0.6407 | —0.7421 | —1.4377 | —1.8171 | —2.3123
2 0.9885 0.7953 0.6434 04511 | —1.3171 | —1.7629 | —2.2922
3 2.0758 2.0252 1.9958 1.9695 1.7975 1.7297 1.6691
n=35
1 —0.2036 | —0.4284 | —0.5406 | —0.6407 | —1.7927 | —2.3025 | —2.3025
2 0.5631 02826 | —0.2830 | —0.4904 | —1.7908 | —2.3025 | —2.3025
3 12298 | 1.1567 1.1148 1.0784 0.8992 0.8555 | +0.8247
4 1.8710 | -1.8342 1.8135 1.7954 1.6892 1.6521 1.6203
5 2.5069 2.4907 2.4818 2.4736 2.4249 2.4057 2.3879
. . n=10

1 —0.1501 | —0.3565 | —0.4782 | —0.5911 | —1.3865 | —1.7918 | —2.3025
2 0.2385 | —0.3057 | —0.4604 | —0.5842 | —1.3865 | —1.7918 | —2.3025
3 0.5977 0.5156 0.4763 04490 | 0.3755 0.3647 0.3576
4 0.9234 0.8740 0.8480 0.8270 0.7138 0.7260 0.7138
5 12433 7| 1.2093 1.1910 1.1756 1.10% 1.0824 1.0676
6 1.5611 1.5366 1.5232 1.5120 1.4519 1.4334 1.4184
7 1.8781 1.8602 1.8505 1,8422 1.7958 1.7801 1.7666
8 2.1943 | .2.1818 2.1751 2.1690 2.1354 2.1231 2.1125
9 2.5102° | 25021 | 2.4978 2.4942 2.4719 2.4640 2.4564
10 2.8261 2.8243 2.8219 2.8201 2.8074 2.8030 2.7992
' n=20 -
1 —0.1161 | —0.3372 | —0.4700 | —0.5878 | —1.3865 | —1.7918 | —2.2025
2 0.03766 | —0.3356 | —0.4699 | —0.5878 | —1.3865 | —1.7918 | —2.3025
3 02818 | -0.2144 0.1977 | 0.1891 | +0.1713 | +0.1689 0.1673
4 10.3508 0.4027 03842 | 03724 0.3422 | 03376 0.3345
5 0.6134 0.5772 0.5608 0.5491 0.5124 0.5060 0.5016
6 0.7738 0.7451 0.7312 0.7206 0.6817 0.6739 0.6684
7 0.9331 0.9096 0.8978 0.8884 0.8500 0.8414 0.8351
8 1.0917 1.0723 1.0621 1.0539 1.0173 1.0083 1.0015
9 1.2502 1.2336 1.2249 12178 | (11838 - | 1.1746- | 1.1674
10 1.4081 1.3940 1.3866 1.3804 1.3493 1.3404 1.3332
11 1.5660 15539 | 15477 1.5422 1.5142 1.5057 1.4988
12 1.7237 1.7136 1.7081 1.7034 1.6785 1.6705 1.6638
13 1.8814 1.8728 1.8680 1.8640 1.8423 1.8350 1.8286
14 2.0391 2.0317 2.0279 2.0244 2.0054 1.9991 1.9935
15 2.1968 2.1906 2.1873 2.1843 2.1685 2.1627 2.1578
16 2.3542 2.3493 2.3465 2.3442 2.3311 2.3263 2.3221
17 2.5116 2.5076 2.5057 2.5040 “ | 2.4933 2.4895 2.4863
18 2.6694 2.6664 2.6645 2.6633 2.6556 2.6527 2.6500
19 2.8267 2.8247 2.8238 2.8230 2.8178 | 2.8159 2.8142
20 2.9840 2.9830 2.9826 2.9823 2.9795 2.9786 2.9779
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As a supplement of Table I we give the analytical solutions for certain film thick-

nesses in the case of arbitrary K:

K] n=2 n=3
K+1 o —arocosK_l_\/Kz_l_8
07 = arccos o, ! 4
K< 1 e, = arccos (KJ2)
% = arccos —— —K+VEK?+8
2 O3 = arccos -
VK2 +8

22 o)) (&£ 7))

1< K| <—

o, = arccos = &z = arccos (K/2)

—K+VEK*+8
o3 = arccos ———

R (ERIEN))
()

—K+VK*+8

K VEK*+3
0y = 1]1('— + -+

‘n+1

. S
,,,=m(f<_+z+ /(&) _1)
2 {2 /
K| > — -
ot It (K—l)’ .
- 2 p)

%3= arccos

The values of «,(K) can be approximated by the formula

_m(t—1—¢) _ K_—_l
ut(K) - n—e > &= K+1 (12)
oi(K)~InK 13"
ox(K) ~ In (Kf "—:’—1) (13")

The simple approximation proposed above reproduces the exact analytical solutions
which are well known for some values of K: — o0, —1, 0, 1, co0.
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3. Formula for the density of states

Starting from (4) the density of states and its spatial distribution given by (1) and (2)
rewritten by means of Fourier transformation take the forms:

GulE) = -— Z J exp ( —ix <E EZ*— E** sin? >) f(x)dx (14
Gu(E, v) = 2% Z {‘ (Tv,)2 exp (— ix (E ~ E%*— E* sin —)) f(x)dx (15)

T -

where

Integratlon over hx, hy leads to the result : e

=, ey S =TReE L an
where Jo(z) denotes the Bessel functlon Next we. replace the Varlable X by Z= xE“/Z
This allows us to discuss the function G(E) and G(E, v) as the universal densxty of states

which is independent of the spec1ﬁcat10n of the physxcal problem in question. Namely,
we get - -

al(a) Z J exp (2125,)] (2)dz (18)
+ o .
Gaiev) = Z (Tz)2 f exp (2125 M 3(2)dz (19)
where
5, =1 +'sin2%i~+sgl—'a (20)
and €& = ESME* ¢ denotes the variable. of energy in relative units E*. After integrating

we obtain the following:

i1 ‘
Gasle) = —i Z I'e, 7) @1

Goafe, V) = Z (T)Te7) kg 22)
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and I'(e, 7) is expressed by the hypergeometric series
I'(e,7) = oF(3, 3515 1-67) 23)

for 0 <62 <1 or I'(e, 1) = 0 otherwise. »

In the same interval (0,1) for 62 the function I'(e, 7) can be written in a form more
convenient for practical calculations by the complete elliptical integral K(k) in the follow-
ing way

I, = - KW1=a), @4

Finally, the summation in (21) and (22) over 7 with respect to (23) or (24) must be carried
out numerically even if analytical solutions for «, are known, as for example if K = 1,
and the more when numerical solutions for «, are obtained. The numerical character of the
calculations in question is caused by the fact, that I'(¢, 7) is a discontinuous function
of ¢ and it is determined only in certain intervals of ¢, which depend on 7. This shall be
shown below.

However, we can derive from (21), (22) and (20) some general properties of the
universal functions G(E) and G(E, v). Namely: 1) the functions in question differ from
zero if & belongs to the interval (gmin, Emax) Where

. . 2%
i = Min (e"(‘,"t +sin® E’)

Epax = Max (s?,"+2 +sin? %) . (25)

For example, & belongs to (0,2 + cos? 7/2n when &' = 0, K= 1; 2) the total density
functions are simple compositions of the density functions for every 7, which are deter-
mined in the intervals (g, , &:y,,) Of € given directly by the expressions in the brackets

in (25); 3) the functions I'(e, 7) at the points
oA 2.2 x
& =gy +1+sin > (26)

have points of singularity. The normalization integral of I'(e, 7) over & is convergent and
it is equal to m. Thus the integration of G(¢) and G(e, v) over & show that the density
functions in question are normalized to unity.

From our remarks it is evident that the parameters o, play the role of numerical
coefficients which are necessary to construct the total density of states. In the present
paper we give by graphs 1-3 representative curves for the universal function of the density
of states for one-band spectrum of energy, so we have put e&* =0, A = 1, y = 1. The
curves related to mE*/2 are traced in arbitrary units.
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Fig. 3. Spatial distribution G(e, ) of the density of states for n =5 and K = 10

- We would like to remind here again that 4) the spatial distribution of the density of
states satisfies the relation

G, v) = Gle,n+1—v), @7

if symmetric boundary conditions for T,, [6] are taken into account.

4. Certain application of the spatial distribution of density of states

~‘We shall apply the obtained spatial distribution of the density of states in the sense of
formulae (2) and (22) to a certain problem connected with the electron density distribu-
tion’ at the surfaces of thin films. Our results are purely qualitative since we would like
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to stress that the properties of the density of states distribution obtained here are sufficient
to allow us to interpret some experimental facts. from the physwal pomt of view.

We consider a two-band model with the relative energy gap e2—es = g9 >0 where
s = 0 is the reference level of the energy scale. The surface parameters are K= 1,
K?> 1. A total spatial distribution of the density of states is given by the formula G(E, v) =
= G,(E, v)+ G,(E, v). We are now interested in obtaining the form of the distribution of
electrons in surface layers and within a film. Thus, at the basis of (25) we can see that the
energy intervals in which the electron energies are localized are of the following forms:
a) within a film

(0, 2 +cos® %) and (so, gy +2+cos 2(nn 1)) 28)

b) in surface layers

: T 1 1- ..
(0,2+cos2é;) “and (so—%K+%—'4——K,ao—%K+§—E<). 29

Thus we see, according to (28) and (29) that for properly chosen & and K it may g")c;cur
that within a film the bands are separated while in surface films they are situated within
one interval of energy. Hence the electrons in surface states are subject to quantum rules
valid for two bands simultaneously since, filling the levels of these bands they cannot
have arbitrary oriented spins. It may thus occur, the conditions being properly chosen,
that electrons in surface states mainly localized in surface layers have spins fully compen-
sated while electrons in volume states, the probability of whose existence at the surfaces
is very small, may have spins of parallel directions.

The discussed case explains in a simple way the existence of magnetization inside
a film and its absence in surface layers. This phenomenon has been explained by means
of the same physical principle but along a different procedure [7]. The fact of ascertaining
this well known conclusion only shows the effectiveness of the presented method, which,
in a similar way, may be used in many problems of thin films. The possibility of effective
application of properties of the spatial distribution of density of states proves the use-
fullness of introducing this distribution.

5. Final physical conclusions

The density of states is a function of the film thickness, of the position of a layer in the
film and, of the surface anisotropy. At the same time the shape of this function determines
the dependence of physical properties on the factors mentioned above.

The spatial distribution of density of states indicates the different character of oscil-
lations for different layers.

The surface anisotropy K << 1 causes the shift to the beginning of the density curve
from &€ =0 to & = g,;, # 0. This shift removes the divergence in formulae describing
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physical properties of thin films. Sufficiently strong surface anisotropy K > 1 leads to the
appearance of two separate subbands; one of them is called the surface subband.

If the film thickness increases the function G(g) behaves in the following way: G(g)
for & = gy, and & = gy, decreases from (mE**)~! to 0; G(&) in the whole interval of & be-
comes more and more oscillating. The interval of ¢, in which G(g) differs from zero, incre-
ases from ¢ =2 to ¢ = 3.

The shape of the function G(g) depends on the approximation method used for ob-
taining the energy spectrum. In this sense, the different approximation methods, even
if the physical assumptions are the same, will lead to different results being the basis of
the physical interpretation of phenomena. For this reason, not only assumptions due to
the physical mechanism and experimental data but also the formal procedure must be
taken into account to verify possible conclusions.
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