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On the base of the general theory developed in Part I, the statistical thermodynamics
of laser operation is given. The method is general, but the concrete calculation was carried
out for a certain simple model of a solid state laser. This model consists of N two-level lasing

~ atoms and one mode of an electromagnetic cavity in exact resonance with the atoms. The
dynamical behaviour of the system is described by a usual Hamiltonian (the “inner” behav-
iour) and dissipation and pumping operators (the ‘“outer” behaviour, the influence of
environment) chosen in confirmity with the conditions given in Part I. A 6- and 11-temperature
thermodynamics of the laser action is given, and its result is that in the asymptotic stationary
state (time # = 00) below the threshold of pumping the solution is ergodic (independent
of the initial state), and above the threshold it is semi-ergodic (depends on 2 initial mean
values, namely electric and magnetic signals). It is shown also that in the 11-temperature
thermodynamics a second order energetic temperature of the electromagnetic field occurs,
in conformity with the well-known theoretical and experimental results (Risken 1968). An
analogy to the working of superconductors is indicated.

1. Introduction

Although the laser is such a recent device, the literature on it is enormous: in the first
10 years of its existence more than 10000 papers were published (cf. Haken 1970, p. 1).
Even laser theory has very extensive literature and its review is a large undertaking as is
shown by the mentioned Haken’s article (Haken 1970) which actually is a book, a séparate
volume of Handbuch der Physik of 320 pages. Of course, also such an extensive review
eannot be exhaustive, as is explicitly stated by its author who said on its first page: “we refer
in the present article only to those papers which were used in its preparation or which
are closely related to the special topics treated”. Therefore, we do not try here to give
a synthetic image of the existing theory of lasers as an introduction to our own contribution.
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We give only some short remarks considering the character of our contribution and its
place in the existing theory. In the latter there are two branches: the microscopic theory
and the phenomenological one, although there are also many papers of a mixed character.
Because, however, of the very unconventional features of laser problems, and the urgent
need of quick explanation of the experimental results, most theoretical papers use
many “Ansatz’es” and ‘‘plausible assumptions” of a more or less phenomenological
character, but without closer theoretical explanation or foundation. In contradistinc-
tion to 'this situation in the present paper we are much less interested in obtaining
direct experimental results than in the - theoretical explanation and foundation of
the laser operation. Most physicists;‘ especially experimentalists, think that already
Einstein’s theory of spontaneous and stimulated emission plus the concept of negative
temperature (inversed population) explain without rest the laser action, but this is a crude
oversimplification. First of all, the Einstein-theory concerns only the equilibrium of
a radiation field (the black body radiation) while laser radiation is very far from black
body radiation. Secondly, as we shall show explicitly below, one temperature is not enough
for the description of laser operation above the threshold (only below. the threshold,
but then the laser does not operate yet in the proper sense).

, ' The main point of our theory is that it is a thermodynamical description of the laser
action, thermodynamical in the sense explained in Part I of the present paper. Our thermo-
dynamics is statistical and information-theoretical thermodynamics, it is also many-
-temperature (cf. Ingarden 1969) and irreversible, and therefore called generalized irrevers-
ible thermodynamics. From the point of view of Part I (which is a theoretical base for the
present investigation) our laser theory is only an illustration. But from the point of view
of laser theory, the subject of PartI is just what this theory needs for its later development:
clear definition of all concepts, clean and self-consistent formulation of the method of calcu-
lation. Up to now we had too much details, too much clumsy and quick calculations for
obtaining per fas et nefas the results which were mostly known boforehand from experi-
mental investigations. The time has come for a quiet and dispassionate investigation and
maintaining mathematical correctness. It is not a secret (since it is a rule in physical investi-
~ gations) that foundations are built later than the upper stories. So most of our final results
are well-known, but there are also new vistas and new results. Incidentally, we now know
why some well-known results are correct (or approximately correct) while the assumptions
under Wthh they were obtained for the first time are positively false. Indeed, although our
theory presented in Part I is very general, it is restrictive enough to exclude many of the
current ideas and assumptions popular among physicists. Fortunately enough, most
(although also not all) of the ideas and Ansatz’es of one of the leading schools in laser
theory, that of Haken-Weidlich in Stuttgart (in which the author had good luck to work
in 1966) appeared to be correct from the point of view of our theory.

'. The model of laser which we use here is a simple model of the solid-state laser with
one mode of an electromagnetic cavity in current use by many authors (¢f. e.g. Fleck 1966,
1966a, Fain and Khanin 1967). We use it here only for the sake of 31mp11c1ty, since any
other, more reallstlc or one of another type of laser, may be also used as an example of
our method. It is our hope that in future many different and more complicated models
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will be also treated by our method and that it will show its usefulness not only for school
models. S :

The present investigation is a further development of one which was published in
a short and mmperfect summary (Ingarden 1971).

2. Dissipation operators

In Part I using the paper by Kossakowski (1972) we formulated the following genera-
lized equation of motion for the density o(t) of a non-isolated system

fig(—t—) = Lo(t), t=0 2.1
o dt .

(Part I, Eqs (2.37), (2.39)), where we selected (for the sake of simplicity) the Schrodinger
picture, and ¢ denotes time. o(t) operates in the Hilbert space of the system (since the
Hilbert space is fixed, we do not use here its symbolic notation and reserve in Part II the
letter H for the Hamiltonian as below), while L, called the generalized Liouvillian (in short
Liouvillian), is a linear operator (superoperator) acting in a dense set D(L) in the Banach
space B; defined in Part I, so .

o(t) e D(L), D(L) = B;. ‘ 22
In general, we can decompose L into two parts

L =Ly+L,, 2.3)
where

1 1
LO R T [H3 ']9 i.e. LOQ 5 T [H’ Q]’ ' (24)

denotes the usual reversible Liouvillian describing the inner properties of the system and
determined by the Hamiltonian H of the system (being a self-adjoint, non necessarily
bounded, linear operator, up to 2 constant f)ositive definite, acting in a set D(H) dense
in the Hilbert space of the system), and L, called by us the dissipation operator,
describes the influence of the surrounding on our system, and is the source of irreversible
behaviour. In (2.4) we put the Planck constant h = 1, i> = —1, and [4, B] :=AB7Bxi
(the other brackets used in the following are: (.,.) denotes the scalar product in the Hilbert
space, {4, 0> := Tr (4g) is the mean value of observable 4 in the state o, {4, b, ...}
is the set of elements a, b, ...). The operator L, (and therefore L) is not an arbitrary linear
operator in B;, but such that there exists a dynamical semigroup A(z), ¢ > 0, acting in
‘B, (cf. Definition 1 in Part I and conditions (2.25)~(2.29) contained in this definition)
for which

Lo = siim L’)f—é' , 0eD(L)A(1)e = Mo, i =0, 0 = 0(0). @.5)

L t=>+0



18

‘Following Kossakowski- (1972) we shall construct some examples of A(z) -and:L
- which will be useful in the following. We give only final results since proofs may be found
in Kossakowski’s paper (1972).

Let us consider first a linear harmonic oscillator with frequency w and Hamiltonian
wa*a, where a* and a are the creation and annihilation operators, respectively. We shall
-construct two examples of dlss1patlon operators.

1) We write 0(0) =: o and define

o) = AWe:= | U, eVt Dplt, Dz, 120, 26)

where C is the complex plane d*z = dxdy, z=Xx+iy, X,y €R = the real axis, and
z=x-iy)

U(t, z) := exp (—iwa*at) exp (za* —za), @7
(t ).__1_ ( e 0 Q.
pt, 2) := St exp| — W) , n>0, (28)
We .obtain |
d * *: e
f;—(t‘) = Lo® = + [od'a, e +1lla, o], 4], 130 29)
and hence
1 * . *
I = a [wa’a,.], L;=n[la,.],a] (2.10)
2) We put
o(f) = A(t)o : = jc V(t, 2)oV'(t, 2)p(t, 2)d*z, 1>=0 (2.11)
where |
VG, 2) = { ¢ + i) | @ za 0, (12
(t, z) = exp{ —t(k +iw) (a a— 1—exp [—t(ic+ico)-])} yanges10, (2.12)
el |z] 2
p(t, z) = ;aje% exp <— 1—_21‘27:) : (2.13)
Now we obtain (¢ = 0)
d * * *- ’
——%(tt—) = Lo(t) = — [wa a, ()] +x([a, e()a"]+[ao(t), a’]), 2.14)

and therefore

Lo = ;_[.(Da*a, 1 Ly = «({a, . a*] =fal-# a*]). (2.15)
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The dissipation operator, L, occurring in (2.10) may be called the diffusion or
Brownian motion or Langevin force operator because of the form of (2.8) and
the character of its action on o(¢) causing an increase of mean energy

E(o(t)) = <H, o(t)) := Tr(Ho(?)), H := wa*a, (2.16)
ie.,

d
EE(Q@) = <{H, (Lo+Lye(®> =n, 1n>0. @17

Independently of the initial state, the final state is always mixed, we have heie therefore
the case 3 given in Table I of Part L.
" On the other hand, in the example 2) the dissipation operator L, in (2.15) may be
called the friction operator since it causes, in general, a decrease of both entropy and
mean energy as ‘we have
s-lim o(f) = P, (2.18)
t—> o0
where P, is the projection operator on the vacuum-state-vector 0 (the ground state), in-
dependently of the initial state ¢ (an ergodic motion). Thus

5(0(0)) = E(e(0)) = 0;  s(e(®)) = —Tr (e(t) In ¢(2)). (2.19)

We have therefore case 2 of the classification given in Part I, Table I.

The dissipation operators L, in (2.10) and (2.15) were found by means of some plauSi-
bility considerations just for application in laser theory first by Weidlich and then frequently
used in publications of the Stuttgart School (Weidlich, Risken and Haken 1967, 1967a,.
1967b, Gnutzmann and Weidlich 1968, Weidlich, Risken, Haken and Gnutzmann 1969,
Gnutzmann 1969). Actually, the combination of both the dissipation operators was used

d 1 * i T
_%(t_t) - [wa a, o] +x([a, o(a ] +[ae(®), a’])+

+n[[a, o), a’]- ‘ " (220

It may be easily shown that (2.20) is the most general expression containing only
terms with one @ and one a*, and preserving the trace of o(¢). Kossakowski (1972a) proved
that any sum of dissipators is a dissipator, so (2.20) presents a correct equation of motion
in our sense.

Eq. (2.20) describes also an ergodic motion since, independently of the initial state,
we obtain asymptotically the stationary Gibbsian canonical final state

s-lim o(f) = Z~*(B) exp (—Ba’a), (2.21)
Z(p):=Tr (—pa'a) = (1—e™P7, ' (2.22)

1 Actually, only if the initial state is diagonal in H. T, obtain such a situation for a completely
arbitrary initial state we have to add to the right-hand side of (2.20) the dissipator of “off-diagonal
friction” found by Kossakowski. (1972) and applied to this problem by Ingarden (1973).
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where the (dimensionless) inverse temperature g = T-1 (T —temperature) is a func-
tion of k and n only, -

1 n 2k
B = FoT In & = (the latter for n > k), (2.23)

2K+n

the right-hand side formula giving the “high temperature approximation”. The rightness
of (2.21)~(2.23) may be checked by inserting (2.21) into (2.20) with the time derivative
equal to 0. We obtain

Qr+n)ae g’ b g’ Fag e =
= Q+n)a‘a+y, (2.24)

which after using the well-known relations (¢f. Haken 1970, p. 298, Eqs (X.2.11) and
(X.2.12))

e Pragtebta = gremP g haagbata _ b (2.25)

gives an identity only under condition (2.23).. We used also the definition relation of a
and a* ’ ‘

[a, a*] = 1. / (2.26)
We now obtain
, we™? on
E = = —
(el = =3,= 5 (2.27)
-8 .
N T T St AP RIS H B
1—e 2K +9
n . 2xk+n
— 1 .
Tt Ty (2.28)

We see that in general the mean energy and the entropy of the final state may be greater
or smaller than (or equal to) the respective properties of the initial state (an exchange
of energy and information with the environment). If, however, we consider only the
macrostate fixed by the mean energy (2.27) (i.e., the class of all states with the mean
energy (2.27), cf. Part I), the motion (2.20) with the initial state in the macrostate does not
change the mean energy while the entropy increases up to the equilibrium maximum
value (2.28). On this simple example we see how our quantum irreversible thermodynamics
works giving results similar to the classical well-known ones (which, however, as far as
we know never have been formulated in such a precise way). -

Now we go over to the second system of importance for our ldter investigations,
namely a single spin 1 system, the simplest quantum system possible, whose Hilbert space
is two-dimensional. In this case it is possible to give thé most general explicit theory of the
evolution equation and this was done by Kossakowski (1972b). We give here also only the
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final results of his investigations. Any linear operator X in 2-dimensional Hilbert space
can be presented in the form

3 4 .
X = % (x000+ 21 x,0;) = % (x00 +x0), (2.29)

where x,, ..., X3 € C and

10 - (01 0 —i 1 0
6o 1= (0 1), 6yi= (1 0), 0'21=(i 0), 03:=<o _1->. (2.30)

We have the well-known relations
3

0’32 = 00(5 = 0, 1, 2, 3), O'jO'k = 5jkao+i Z ijlo'l
=1
U,k =1,273), (2.31)

where 6 jk’ahd & are the Kronecker and Levi-Civita symbols, respectively. X is hermitian
iff xo, ..., X3 €R and then we obtain from (2.29)

Xo+Xx3, X{—ix
D i et (2.32)
X +iXy, Xo—X3

Its eigenvalues are
Eia = 3 Grok O+ 343D = # (ot al). 233
Therefore, X is positive definite iff '
Xo =0, |x| = (F+x3+x3)F <xo (2.34)
Any density operator @ > 0, Tr ¢ =1 can be presented as
' 0 = Yoo tx0), x| <1. (@239
We shall write in general
0(xo0, %):= ¥(xo0o+x06) =: %(xoo'o‘l‘-’%), (2.36)
so the density operators have the form ¢(1,x). It can be shown (Kossakowski 1972b)
that the most general infinitesimal operator (superoperator) transforming a Q(l,x) into
a x(1, y) has the form
3

1. INO 0 247ty e e
Lo=71bedtg Z {”f S —122—3} Le;: [es» el (2.37)

i=1
where b is a 3-dimensional real vector and e; (j = 1,2, 3) form an orthonormal vector
base in R3, while

Y1, Y2, Y3 =0 (2.38)
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are dissipation constants of our problem. In particular, we may put (we shall use this case
later on for our laser model)

¢;=0pU=123), p=y,=9,>0 y,= >0, (2.39)
and obtain
Lie = = %[y (0100, +0,00,) +7)103003]—
— 3@ty (e—0gy) = — {n(os, [o1, @11 +[0s, [02, 0]1+
+@y -y [o3, [03, 011} ) (2.40)

3. Pumping operator

The laser “action is frequently described as a balance between dissipation and
pumping. This is a true picture, although distinction between the dissipation opera-
tors and the pumping ones cannot be carried out in a clear cut way. Indeed, in our
examples above the dissipation operators (2.14) and (2.20) may be considered also as
pumping operators since they “pump” any initial state into the final states (2.18) and
(2.21), respectively. In these processes the entropy of the system can sometimes decrease,
therefore the system is then ordered, “pumped”. But, as we mentioned above, if we start
our motion not from any state (any element of the set W, ¢f. Part I (2.2)), but from any
element of the macrostate M (cf. Part I (3.4)) defined by .the mean energy (2.27), then
pumping is excluded and we have only a dissipation (the entropy increases). Therefore,
the concepts of dissipation and pumping are relative to the set of initial states considered.
The same will be true with respect to the class of “pumping operators” which will be con-
sidered in this section, although now they should primary “pump” and not “dissipate”
(and they do so with respect to all initial states with entropy greater than the entropy
of the final state). ) ,

In this case we are interested (in view of the application to lasers) only in the spin
system, i.e. a 2-dimensional Hilbert space. If (cf. (2.36))

0(x0, X) = Rixo00+x6) = 0*(xo, %) @B.1)

is a hermitian operator (xo,x € R), we have

Tr o(xo, X) = Xo, lo(xo, )11 = F{|xo+x|+]x0—x]}, (32
¢f. Part T (2.3). Iff o(xo,x) >0, we have (2.34) and
Tr o(xo0, x) = [lo(xo, ¥)|]1. (3.3)
For density operators o € W(¢ >0, Tr ¢ = 1) we have o (2.35),
: e =e(,%), x| <1 (3.4)

Following Kossakowski (1972b) we construct now a class of pumping operators by
means of an inhomogeneous linear transformation (after that, however, we can ‘“‘compress”’
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this class into the class of homogeneous transformations by means of relation (2.24)
of Part I, due to Tr ¢ = 1). Let us take first a homogeneous linear transformation depending

on time t >0

A(De(1, x) = o1, A@®)x), (3.5)
where A(f): R® — R® is a homogeneous linear map such that
|A(t)x|< x| for all x € R3, A()A(s) = A(t+s), 5,1 =>0. (3.6

There. exists a linear transformation B in R3 such that

20

= A(H)B = BA(Y), i.e. A(t) = ¢”. ) 3.7

Then we obtain

d_/l(t)jt(l_’ Il g<_o, f’,A_;)_x> — o(0, BA(H)x), 6
or- denoting ‘
o(t) = o(l, x(2)) := A@)e(1, x), x(t) := A(t)x, [x| <1, >0 (3.9
(of course, x(0) = x, ¢(0) = ¢)
dfl(t’) - de(l;:(t)) — (0, Bx()) =: La(1, x(t)) = Lo(?). (3.10)
Let us take now a fixed density operator
2 = oLy, yI<L, (3.11)
and define the inhomogeneous transformation connected with (3.5) (¢ = o(1, x))
, A(t)e = A(t)o+(20— A(t)go) (3.12)
or more explicitly
A@)e(1, %) := o(1, ADx+y—A®)y), x| < 1. (3.13)
Let N ‘
Z(y):= Jup ligl [A(t)x +y— Ayl (3.14)
FL):={yeR: |y <1, Z») <1} (3.15)
We assume now that
y e F(L) . (3.16)

which is in general a stronger condition than (3.11) and which guarantees that

o(t) = o(1, x(t)) := A(H)e(1, x) = o(1, A(t)x+y—A(t)y) =0, (3.17)



24

i.e. the preservation of positive definiteness of o(t) for ¢t > 0 (while the preservation of
trace, Tr g(#) = 1, is guaranteed by the form of (3.12) and (3.5)). We call F(L) the pumping
domain of the dissipation operator the dissipation operator L.

We ‘obtain finally

do(®)
= = Le®—eo)  eoF), 30, (3.18)

In our case (2.40) we assume
Qo = 90(15 0’ 09 x): lxi gf(y_j_a 7“) < 1, (3'19)

where x may be called the pumping parameter. It can be shown (Kossakowski 1972b)
that in this case f(y  , 7)) = 1, i.e.is independent of the dissipation constants, which consi-
derably simplifies our calculations. Thus

¥ < 1. : (3.20)

4. A laser model

“ After the above preparation we are able to formulate a simple model of a solid state
laser. Our model consists of two components:

1) a lasing substance composed of N two-level atoms (magnetic ions) considered
as unmoving in space and sufficiently distant one from the other that there is no direct
dynamical intcractiQn between themselves. The two energy levels, e.g. two Zeeman levels
in a magnetic field, are different from the ground state level considered as distant in compar-
ison to the difference of energy of the two levels (as the other, higher or lower levels of
the atoms which are neglected in our model). The atoms are identical, but distinguishable
through their positions in space which are different and numerated by the indexj =
=1,2,...,N. The atoms are described by “energetic” spins } with index j, their 3rd
component (z-component), 0%, ¢f. (2.30), being proportional to the energy operator
of the jth atom, while the interaction with the electromagnetic fields is determined by the
dipol moment operator which we take as proportional to 1st component (x-component) of
the jth spin, i.e. 303, cf. (2.30). Other levels of the atoms are considered as a part of the
environment and all the total effect of the environment is described by the dissipation
operator L} for each atom, ¢f- (2.40). The atoms are pumped by the pumping operator
(3.19) with (3.18); (3.20).

2) an electromagnefic cavity with one mode in exact resonance with the energy
difference of the lasing atoms, while the energy levels of other modes are considered as
distant and as forming a part of the environment. The mode in question is described by
a linear oscillator with frequency w, while the effect of environment is described by the
dissipation operator as in (2.20). :

According to our assumptions we may write down our equation of motion (dynamical
semi-group, master equation) in the following form (¢ > 0)

d 1
—gg-t) S LH, e()]+Li(e(t)— eo(x)) + L5 e(®), @n
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(where # = 1, g — the coupling constant, ¢ — atoms, e — electromagnetic ﬁeld)

N N

"H:=%1w Z a§+wa'a—g(a +a’) Z o1 42

j=1 -i=1
0 = (LIxLix...xLe, (4.3)

where
Lie=—3[y,(o]e o} +0} e 63) +y) 0} e 0}] -
— 3@y +y (e —ad),
{0:= x([a, oa']+[ag, a'D+nl[a, 0], a’], (4.4)
1

0o(x) = o (65 +x03) X ... X (oY +x6%), xN =:X, 4.5)

o(¢) and all other operators acting in the Hilbert space defined as the direct product of
N 2-dimensional Hilbert spaces of each atom and the infinite dimensional separable
- Hilbert space of the harmonic oscillator (the mode) (I is the identity operator in the latter
space). All dissipation constants y,, 7, k,# are positive.

5. A G6-temperature thermodynamics of a laser

While in the preceding section we considered the (generalized) dynamics of a laser,
NOW We go over to its thermodynamics in the sense and according to the method explained
in Sectioh 3 of Part I. We assume the following thermodynamically regular system of
linea1ly independent observables of our laser (Ingarden 1971)

N . N . N .
Al = Z J{s AZ = Z 0'5, A3 = Z O'g, . (5.1)
j=1 j=1 Jj=1 i
Ay = (a*+a), .As' := i(a*—a), As := a*a. (5.2)

" All the observables are real and dimensionless, and have clear physical meaning:
A3 and A4g are proportional to the energy operators of the (free) a- and e-systems (@ — atoms,
e — electromagnetic field), respectively, 4, and A, proportional to the two independent
components of the dipol moment of the atomic system (in (4.2) we assumed that only
one is essential which is possible by taking the corresponding axis in the direction of the
electric field), while 4, and 4 are proportional to the electric and magnetic field, respective-
ly. The system (5.1)~(5.2) is the smallest which can be used ‘for describing the laser action
in correspondence to the well-known results (¢f. Risken 1968, Haken 1970). In the next
section we shall consider (using some results of Kojro) a larger system of observables
and shall see how this description is richer, but preserves all general features of our present
description. In such a way we shall see that no subjective element exists in our method,
except the choice of the number of details which is always free by an incomplete description.
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For the moment ¢ = 0 we assume the following ensemble mean values as givén
(not necessarily numerically)
o {4p 0> =Tr(4,0) =U,(n=1,...,6). P - (5.3)

. Using the method presented in Part I Eq. (3.18) and using the Liouvillian (4.1) we.
obtain finally the following closed system of differential equations for U,() (the dot over U,
denotes the time derivative, we drop ():

U1 = —olU,—-y,U,, Uz = oU; -y, U,+2gU;U,,

U, = (X —Us)—2gU,U,, (5.4
U4 = (DU5—"€U4, Us = "‘(DU4—KU5+2gU1,
Us = n—2xUs+gU, Us. (5.5)

The automatic factorisation of the correlations between a- and e-systems (occurs
in (5.4) and (5.5) in the terms with coupling constant g, except in the expression for Us)
is caused by the fact that o,,(¢), ¢f. (3.11) in Part I, maximizes entropy at any time #>> 0
only by U,(¢) which do not contain correlations. Therefore, at any time # > 0 (the macto-
state M is defined by (5. 3))

o) = 63(1) x a3 (). (5.6)

In order to exclude the rapid fluctuation with frequency w we introduce first the rota-
ting variables U,

U, = U1 cos cot—f]z sin wt, U, = U, sin wt+U, cos ot, U, = U,, (5.7)
U, = U, cos wt+ f]s sin wt, Us = — (74 sin a)t—l—ffs cos wt, Us = Us. (5.8)
We obtain

ffl +y, U, = gUs(U, sin 20t+ Us(1 — cos 2mt)), (5.9)
v Updy, U, = gUs(Ua(1+ cos 201)+ Ty sin 200t)), (5.10)

Us+9(Ts—X) = (0,0, sin 206+ 0, 05(1— cos 20t)+
+U,U, (14 cos 2wt)+U,Us sin 2mt), (5.11)
(74—|—KT~J4 = g(—U, sin 2wt+U,(1 — cos 2wt)), (5.12)
Us4-xUs = g(T,(1+ cos 2wt)— U, sin 2wt), (5.13)

ffﬁ +2xUg = n+ L g(U,U, sin 2wt+U, Us(1+ cos 2wt)+-

+U,U,(1— cos 20t)+U,Us sin 2wt). (5.14)

We apply now the well-known method of the rotating-wave approximation (c¢f. e.g.
Bogolubov and Mitropolski 1965), we consider the Fourier extensions in ¢ of the right "
hand sides of (5. 5)—(5 14) and take only the first, constant term. We get

U1+')’_|_U1 —gUaUs, (5.15)
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g ' Uy 4y, 0, = g-ﬁal?4, (5.16)
byt (Ts=X) = —g(@,Ts+0,0), 5.17)
Uy t-xU, = gﬁz, (5.18)

Us—l—KUs gUl, (5.19)

Us+2c0s = n++8(0,05+0,05). , (5.20)

We are interested in the asymptotic stationary solutions of our equations (for # = 0),
and.we may obtain them easily from the above Egs by equatmg the tlme derivatives to 0.
We obtain, however two solutions of such an algebraic problem:

1) when the pumping X < —— AL : X, = the pumping threshold:
g2

U, =0, =0U,=Us=0, U,=X, .f/6=§";. (5.21)

This is_the ergodic solution (independent of the initial conditions) occurring in the -
usual thermodynamics (one temperature for each subsystem), for the e-system (linear
oscillator) exactly the same which we obtained in Section 2, ¢f. (2.27), where E = wUs
since H in (2.16) i3 wAds, cf. (5.2). We see that the both systems are decoupled and that
the laser does not work;

2) when X > Xj:

&4=

X |oe

O, Us=%0, =%, O=l+Wx-x) (60
K 2k 4k

In this case not all U s are fixed by the constants occurring in the thermodynamic
equations of motion (5.15)-(5.20), two of them are free (f]1 and U,, or U, and U,), each
pair being proportional to the other and being fixed only by the initial conditions. Therefore
our solution is semi-ergodic, as we may call this situation: part of the final mean values
are fixed by the equations only and are independent of the initial conditions, while the
other depend on the initial conditions. The free mean values are just the quantities
which may be called the signal parameters (cf. e. g. Louisell 1964, p. 245), the mean
electric and magnetic fields, U, and Us.

We see that below threshold we have only two independent mean values different
from 0 (therefore, also two temperatures of the two subsystems), Us and Uy, above the
threshold we have all the six mean values in general different from 0, which, however,
are mutually coupled Since we can easily observe only the e-system, of 1eal importance
are actually only U,, Us, Us, but then we may calculate the other mean values from our
formulae.

Our . results are in exact agreement with the well-known results of the existing theories
(Risken 1968, p. 269, Haken 1970) and correspond well to the experiments- on lasers.
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Now we may calculate explicitly the temperatures corresponding to the found mean
values in the asymptotic solutions (¢f. Ingarden 1969, 1971).

We obtain the following forms of the representative o, states for our subsystems &
and e in the asymptotic solution (¢ = o), ¢f. (5.6),

op(o0) = Z—l(ﬁ1a B2s Bs) exp (—B1Ay — P24, — B343), (5.23)
where .
Z(B1, B2» B3) = 2 cosh (B3 +55+B3)%, (.29
g U U, N+(U1+U2+U3)

e i=1,2,3 2
U+03+03; "NZ (U1+U2+U)* @ ) S _5?

under the condition of regularity of the problem

U2+ U2+ U2 <N. (5.26)
Further,
03:(0) = Z7 (B4, Bs, Bs) exp (— Pads—PsAs—PsAe), (5.27)
where | ’
xp (54 +ﬁs)
200 B2 B0 = 2, (528)
N 72 . 72 72
ﬁ4=%U41n2+T2, ,35=<}U51n—2-1-;§, B = —ln—— (5.29)

2+1%
under the condition of regularity '
2= 20= 3 (U2+0H =0, (5.30)

By the way we notice that knowing the generalized partition functions Z (5.24) and
(5.28) for both systems we can calculate any thermodynamic function for these systems
(entropies, generalized specific heats, efc.).

Now we may calculate the inverse temperatures f,(n = 1, ..., 6) below and above
the threshold:

1) below the threshold, X < X,

1. N-X 26+1

Bi=Pr=Ps=ps=0, Py=5In—, fo=in e (5.31)

the latter in agreement with (2.23),

2) above the threshold, X > X,
(we denote U2: =U24-U%24+U02 = U34-0%+X2)
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U, N-U U, N-U X, N-U
= =, =z In = 5.32
=g P=mphyye B=p"Nro ©30)
2 2 2
-8 = ey SRS 5.33
ﬁ4_'2; 21 2+1_2’ 55" 2+‘L’2’ ﬁ6 ‘ 2+121 (- )
where now
n.7 g
= ” L(x-x )— (U1+U ). (5.34)
;c
If there is no signal (; = U, = 0) we obtain above the threshold
) , 1. N-X,
Bi=B=PB.=Ps=0, /33——0 m',
4k
=In({1+ —————) ) (5.35)
& ( 21 +7(X — Xo) ‘ |

For very strong pumping (supposing that it is not contradictory with the condition
(3.20)), namely,

¢ 2
X»Xo=", x37, (5.36)
g i i
we obtain
= — R —— Ty ~ ——, 5.37
ﬁ T6 'y“X F B 41C ( )

i. e. the energetic temperature of the electromagnetic field is proportional to the pumping,
while the energetic temperature of the atoms is constant and independent of the pumping
(fixed by the threshold pumping X,), ¢f. (5.35). '
The threshold behaviour is typical to lasers, but also to superconductors. In fact,
there is a close formal analogy between lasers and superconductors, in which the threshold
pumping corresponds to the energy gap of the superconductor. In this analogy to the signal
temperatures there correspond the Bogolubov potentials of the supercurrent. We see,
therefore, that the macroscopic quantum behaviour of bulk matter, observed in lasers
and superconductors, can be macroscopically described only by multitemperature thermo-
dynamics (when we have only one temperature, below the threshold in lasers and above
the energy gap in superconductors, these devices do not work). In such a way we have
shown by means of these examples that multitemperature thermodynamics is essential
for quantum macroscopic phenomena. Of course,-in the special case when is no signal, or no
supercurrent are present, the multitemperature thermodynamics degenerates into one-
-temperature thermodynamics, as was shown above although in this case we have actually
two subsystems with two different temperatures (in lasers they are the a- and e-subsys-
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tems, in superconductors they are: the crystal lattice system and the free electron sys-
tem). For technical applications, however, only the signal ‘and supercurrent are essen-
tial, and then we have the full multitemperature thermodynamics.

6. 11-temperature thermodynamics of a laser

The present author proposed to Z. Kojro in Torufi as a theme of his Ph. D. thesis; an
investigation of higher than 6-temperature thermodynamlcs of our laser model. The thes1s
is'not yet completed, but some of  his partial results are interesting and important enough
to discuss them here shortly in connection with our above study.

We mention first of ali that the number of temperature chosen, although arbitrary in
principle is practically limited by the convenience of calculation. Especially, it is useful
to choose such systems of observables for each subsystem (¢ and e in our case) which
form (for the coupling constant g'= 0) Lie algebras of observables. We did so in Section 5,
and the same was done by Kojro who chose the next Lie algebras in the e-system which
contains the operator A2 = (a*a)* = a*aa*a (¢f. Ingarden 1971). The reason was to
investigate the problem of the second order energetic temperature which seems to be.
observed in lasers (c¢f. Risken 1968, p. 279, Ingarden 1971, Weidlich et al. 1969)

Kojro took the following additional observables besides of ours (5.1)-(5.2) '

A, 1= a*a*+aa, Ay = i(a*a—ad), ‘ (6 1)
Ay = a*aa*+a*a*a+aa*a+a*aa, (6.2)
Ao = i(a*aa*+a*a*a—aa*a—a*aa), (6'3)
A;; = a*aa*a. 6.4)

Not repeating the investigations of Kojro which follow exactly along the same
lines as ours, we give only his final results. All results for » = 1, ..., 6 are the same as
ours, the new are only

1) below the threshold, X < X,

~ - ~ ~ ~ +x
Uy=Ug=Uy=Uyp=0, Uy = ﬂ(’;K : = U6(2U6+1)’ (6.5
2) above the threshold, X > X,
2 2
" (o Ty e g%~ ~
Up =5 U-0D), Us==50,0, (6.6)
K K

2
P . ) g ~
i 3—i2 0,030 +0) +3 (X=X + £ 0,0, +

+ £ 03- 1), ©7)
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> g g2 ~ o~
Uo = 3_K_2 U320 +x) +y (X —Xo) + = U,U,+
g =2 oo o
+ == (Ui-U)), 6.8
2K : o s

2

'}’“ g 5]

Uy = — - AX-Xo) )+ = (U4
1=y n+ ” '<11+2.( 0) ZK( o

2
~ g - =
+U3) <2n Hie+y (X = Xo)+ 1o (lﬁj_l_fé)’_) : (6.9)

First of all we may state that below the threshold no new situation occurs. Indeed,
oy(0) is the same as before (5.31), (2.21)-(2.24), (5.23)~(5.24). For ¢%,(0) it is obvious
since no new conditions are added, we shall also check that aj,(c0) is the same. Indeed,
we have with :

. 2K+ :

05(0) = (1—e Py exp (= fa’a), B =In —1, (6.10)
o. (2.21), (2.22), (2.23),
ﬁG b *  —Ba* e-'ﬁ,
T = Tr (a'ae™#") = (——l—e_”)z s (6.:1_1)
7 : * * — Ba* = d i]
U,, =(1—e?)Tr(a'aa’ae™ %) = —(1—e ")EB 1‘_:_3 =
14+e™? +

B S O | . 6.12)

(1—e %2 22
where we used (2.23). We see U,; is the same as in (6.5), i. e. we have actually the same
asymptotic solution as in Section 5 below the threshold.

Above the threshold the situation seems to be similar since we see that the formulae for
U, ~ U, are the same, while the values of U, — U, , are determined only by the constants
of equations and U, U,, as before, i. e. the same as in Section 5. Actually, however, the
situation is different. We may check this for the simplest case when the signal vanishes
(U, = U, = 0). Egs (6.6)~(6.9) give then

- - " ~ral . 1 2n+x
Uyp=Ug=Ug=Uyo=0, Uy = T 71+T m+ 2y, (X=Xo) ). (6.13)

On the other hand, if we use 64,(c0) as in (6.10) but with § = fi as in (5.35) we obtain
from (6.12) with § = f

= 1 ' T e



32

whis is essentially different from (6.13). We see therefore that above the threshold the
problem with 11 mean values (5.1), (5.2), (6.1)-(6.4) gives in general different assymptotic
solution 6,,(c0) and different inverse temperatures f,,(m = 1,...., 11) than the problem with
only 6 mean values (5.1), (5.2). In the former case we obtam in particular, a second order
energetlc but dimensionless temperature P11, i. e. we have (for the simplest case when
U1 =U. 2=0)

o3(0) = Z—l(ﬁs’ B11) exp (—ﬁsa.a -B: 1‘1“10‘0)- (6.15)

Unfortunately, all temperatures of higher orders in @ and a* than those in '(5.29)
cannot be calculated exactly in a closed form and only approximative solutions (e. g.
in high temperature approximation) can be found. Therefore, we resign here from any
further calculations which will be given in the mentioned Ph. D. thesis of Mr Kojro.
Anyway, however, we can state'that our theory confirms positively the earlier theoretical
and experimental findings of the second order energetic temperature in lasers above the
threshold as mentioned above (Risken 1968, p. 279, where our terminology is, of course,
not used, but the formula similar to (6.15) is given, Risken’s formula (4.6)).

It seems, therefore, that our theory gives all essential effects known for lasers of this
simple type. However, this theory may be developed much further, and more complicated
types of lasers may be investigated by this method.

We should like to add yet a short general comment concerning the method. We see
that adding new higher order observables (6.1)-(6.4) did not change essentially the result
in this respect that (above the threshold of pumping) all mean values depend only on the
constants contained in the equations of motion and on two signal parameters U, and U,
(or U4 and Us). It is obvious that the same will occur-after adding yet higher order observ-
ables. This fact is due to the seml-ergodlc character of the motion. Below the thresh-
old (as in usual thermodynamics of one tempeiature, e. g. of equation (2.20)), where the
motion is ergodic, no information at all about mean values can influence the asymptotic
solution. This is just the reason why thermodynamics is at all poss1b1e without perfor-
ming measurements, except very few. The latter are necessary for measuring the dissipa-
tion and pumping constants, as well as signal parameters in the case of lasers (or super-
current potentials in the case of superconductors, efc.). These constants may be measured
either directly or by means of mean values of some observables, as (2.27), (3.21), (5.22),
etc. We see that no subjective element is introduced into physics by information theory
(as by probability theory in general). The only (seeming) subjectivity lies in which question is
asked, but this is always so. The answers however are independent of us, they are objective,
and depend (if they are true) on the nature of things. This statement is important since
there is considerable misunderstanding among physicists and philosophers in this point,
even Jaynes (1957) seems to belong to them since seemingly advocates the subjectivistic
standpoint.

In contradistinction to the asymptotic solution (for ¢ = 00), the solutions for 0 < # <0
(even in the ergodic and semiergodic cases) depend on initial conditions. It may be shown
that in the rotating-wave approximation.the problem of time evolution can-be reduced to
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equations of the van der Pol or Rayleigh type (¢f. Risken 1968, p. 270 and Anhang 1)
and can be solved by means of the Bogolubov-Mitropolski (1962) solution (cf. Risken
1968, p. 270, Eq. (2.43)).

7. Entropy fluctuations of a two-level atom (spin %)

In our paper we have used the quasi-isoentropic approximation defined and generally
discussed in Section 3 of Part I. As we have seen above this method gives reasonable and
well corresponding to experiment results for lasers (if not mention the usual one-temperature
thermodynamics). But it is interesting to know what is neglected in this method, anyhow
in the case of a system simple enough that exact calculation is possible. The only such
system is the spin % or two-level atom system. Taking the Hamiltonian as in (4.2), but for
one atom only, we obtain

H = }wos;, 7.1)

for the sake of simplicity we assume no dissipation in our system (all dissipation and pump-
ing constants vanish). In this case 3 linearly independent mean ‘values determine the state
uniquely (complete measurement), therefore we can take only two observables at most
in our method of infoermation thermodynamics, e. g

’

A4; = 01,45 = 03, " ‘ (7.2)‘
¢f. (5.1), and put for t =0 _
(A1, 0> = Tr (0,0 = Uy, {43, 0> = Tr(s30) = Us. (7.3)

In this case it will be simpler to use the Heisenberg picture since the equations of
motion for o,(¢) and 6,(¢) in this picture can be integrated immediately. The equations of
motion have the form

61(1) = —w0,(1), 6,(t) = wo, (1), (7.4)
and their solution are, of course, as follows |
04(t) = 0, cos wt—o0, sin wt,
0,(t) = o, sin wt+o0, cos wt, (7.5)

where ¢; = 6;(0) and ¢, = 6,(0). 65(¢) = 03(0) = 03 is, of course, a constant of motion
because of the Hamiltonian (7.1). »

Now according to the method presented in Section 3 of Part I we calculate g,; (which
in the Heisenberg picture is independent of time)

ox = Z7" exp (—f10,—P303) = Z ' exp (—feo) =
= Z™ Y6y, cosh f—ea sinh B), (7.6)
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where we used the vectors

. (%0 _f’ﬁe) B:= B+8)Y,

0:= (04, 0,5, 03). (1.7)
Then
Uy(f) = Tr (0y61()) = cos ot Tr (040,)—sin wt Tr (90,) = cos wtUy,  (7.8)
Us(t) = Us, (7.9
where we used the relation (for ¢ = 0)
Tr(oy0o.) = 0. (7.10)
Calculation of () gives finally

2(cos (w)U,0,+Uj0 3)} (7.11)

oy(t) = 1<0,+
u() ’{ °" 1 4cos? (U + U2

and we see that it is a periodical function with frequency w. The same frequency occurs
in the exact thermodynamical entropy, ¢f. (3.19) of Part I,

S(t) := —Tr (o4() In 7(2)). (7.12)
‘The latter can be exactly calculated as follows (Kossakowski, a private communica-
tion)
S@) = —A4:)In A1(t)—2,() In 2,(2), (7.13)
where
2(cos? (wf)U3 +U3)?

A =1A+A0), AM):= ==,
1,2(0 FALA) () 1+cos? (@) U2 + U2

(7.14)

A similar calculation was performed by Urbanik (1964), but with his earlier defini-
tion of macrostate and entropy in time ¢#. One may see that our calculation and the final
result are simpler, although both results are qualitatively similar.

Finally, we may say that what we neglect in our “quasi-isoentropic” method are

very quick fluctuations of entropy and oy(f) with optical frequency w. But in the above
calculations of Sections 5 and 6 we also neglected phenomena with this frequency using
the rotating-wave approximation, since they cannot be followed by macroscopic observ-
ation. Therefore, all of our method seems to be mathematically consistent and physically
reasonable. We hope that its applications may be also practically fruitful.

The author thanks cordially Dr A. Kossakowski for his very useful and deep discus-
sions, as well as for constant technical help in performing and checking our calculations.
Thanks are also due to Mr Z. Kojro and Mr A. Jamiotkowski for their critical discus-
sions and checking of some calculations.
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