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Two formulae for temperature dependent magnon energies in Cr,Os are obtained
using the method of Bloch and the method of Nagai. The connection between them is discus-
sed. Comparison of the numerical results with the experimental data of Samuelsen shows
disagreement for higher temperatures. -

1. Introduction

Different methods are used to obtain theoretically the temperature dependent magnon
energies. One of them is based on the Oguchi [I] expansion and the minimum property
of the free energy (Peierls [2]). This method was first introduced by Bloch [3] for cubic
ferromagnet and antiferromagnet with one interaction constant. In this paper the same
method will be used to obtain the temperature dependent magnon energies in Cr,0s;.
The final formula will be given in the form of an implicit equation which must be solved
selfconsistently. Then the same effect will be described by the approximation first introduced
for antiferromagnets by Nagai [4], and the connection between the two methods will
be discussed. Finally, we shall compare the numerical results based on these theories with
the experimental results of Samuelsen [5], [6].

2. The Hamiltonian and its transformations
The Hamiltonian for Cr,O; will be assumed in the following form:

H# = -GY Si+GY §%— ZJ,,,S, Si—= Y TS * S
l m

m#*m’
-2 IZ JimS1* Sy, ®

(in the first two double summations each interaction is taken twice).

* Present address: Atomic Energy Establishment UAR, Cairo, UAR.
** Address: Instytut Fizyki, Uniwersytet Jagiellofiski, Krakéw, Reymonta 4, Poland.
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G is the effective anisotropy constant, J;, are the interaction constants between spins in
the first sublattice, J,,,, are the interaction constants between spins in the second sublattice,
and Jj,, are the interaction constants between spins in the first and in the second sublattice.
Cr,0; has the corrundum (x—Al,O;) crystal structure, it is an antiferromagnet with
Ty = 308°K. The crystal and magnetic structure are discussed elsewhere [6, 7]. We shall
restrict ourselves to five interaction: constants, which according to Samuelsen et al. [6]

Fig. 1. Small unit cell of Cr,Os. z-axis along the three-fold symmetry axis, a1, a2, a5 — the primitive
lattice vectors, vy, v, — position vectors of Cr ions, v = v,—v;

will be called J;, Jz, J3, Jus Js. We assume as the unit cell the so-called small unit cell
to which two Cr ions belong with their spins directed parallel to the z-axis in the case
of Cr ion number “1” and antiparallel in the case of Cr ion number “2” (see Fig. 1.)
Below, in Table I, we give the number of neighbours with particular interaction
constant and their position vectors.
Now, using the Oguchi expansion, we shall perform two kinds of transformations of
the Hamiltonian (1).

Transformation I: S, - a, af; Sy = by, b},

S; =2Sfa, S =~2Sdlf, S

S—afa, f = 1—afa,4s
St = 2Sblf, S; =2Sfubu Si = —S+bib,, fan=1-bib4S (2)

a;, b, fulfil the usual Bose commutation relations.
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TABLE I
Number of Interaction Position vectors of the neighbours
neighbours constant
Cr ion “1” 1 Jy |23
3 J> —ai+vy, —a+ v, —as+v;
3 Js —ai1—ax+v:, —a;—as+vy, —a—az+v,
6 Ja tai+vi, tar+vy, tas+v;
1 Js —a1—A—as+ v,
Cr ion “2” 1 Jy v:
3 J2 ai+vy, az+ vy, az+ vy
3 J3 ar+az+v;, atas+vy,ax+as+v;
6 Ja *tai+vz, tax+v,, taz+v,
1 Js ai+a+as+v;
Transformation II: of, ¢, - df, ag; bt b, > b}, b,
af = (1NN Yakexp (k- ), a = (1NNo) X axexp (k- )
bl = (AN No) 3 bhexp (—ik - 1), by = (11VNo) Y broxp (ik - r,). 3)

The new operators ay, aj, by, bl again fulfil the Bose commutation relations. Summation

runs over k,

in the first Brillouin zone, r,, r, are the position vectors of the spins S, and

S, respectively, N, is the number of lattice points in one sublattice.
The Hamiltonian (1) after performing the first and the second transformation has the

following form:

L4

H = + AP+ P @
constant term  bilinear terms  biquadratic terms
A = —2SN,G+28*No(n—1). (4a)

AP = ; (—28Sn+G+28n(1—{) (afa, +bby) +
+[; (—2Snypagb;+h.c.]. (4b)
@ = (y/2Ny) [{% (a1a2a3b4 +bibybaa,)y 0k, —ky— ks +k,) +h.c.] +
+(2n/No) {Zk} (alazblb)ya— 300k —k;,—ky +k,)+
+(/2No) [{zk} (atalasa, +bTbIbyb, ) o0k, +ky— ks —k,) +hc] -

—(#1/No) {EI‘: (alajala, +b1b,b1b )5 40k, —k, +k;—k,). (4c)
}
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Here {k} means ki, k;, ks, k4, a; stands instead of g, etc.
n = J;+3J,+355+Js (1 <0 for Cr,0;)
i = 6J4; i = (cos (k * a;)-+ cos (k * az)+ cos (k - a3))/3
v, = exp (ik - v) {j, +j.[exp (— ik - a;)+exp (—ik - a)) +exp (—ik - a3)] +
+js[exp (—ik - (a, +ay)) +exp (—ik - (a; +a3)) +exp (— ik - (a+a3)] +
+js exp (—ik - (ay +a, +a3))} = vjsjaisfs)
where
Ji=Jdiln (G =1.5; Jji+3,+3s+is =1 (4d)

Introducing the symbols: a = G/(--2S7),

sy = (=25 AL, Ar = 1+a—6,(1- (),

By, = (—25n)7k (4e)
we can write the bilinear part (4b) in the form:
#D =Y o (afar+bib) + By arby+ By albh. (4f)
k

3. The method of Bloch applied to Cr,0;

In order to apply this method for the case of C1,05 we have to perform a new trans-
formation in such a way that s’ will become diagonal.

Transformation I: af, ay, bl, by = of, o, BL, Bk
af = IO+ 1P B, bl = BPu+ 1B
= I +IP"BE, by = 1P + DBy ®)
li” = [(La+)/260]" exp (igaf2)
D = — (L4271 exp (i)
exp (ig) = Bl Bil; 1P =111
o0 = (L2 1B = (—25) (AR =[PP = (~2Sm)Es. (52)

The new operators of, oz, B, Be fulfil again the Bose commutation relations.
#D transformed in this way contributes to the constant term the expression

SAR = ;(853)—»%() = (—2S’1);(Ek'—Ak) (5b}
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and gives besides:
; e (o + BB = Zk: e (e +np) . (5¢)

We have introduced here the usual notation:
“I!xk =ny, BB = n.

From the transformed #{ we take only contributions to the diagonal terms ie. to
the constant ‘term and to the terms proportional to: > g g My nklnkz, nklnk2 From
each biquadratic term in #{ we get 16 products of 4 new operators. For instance, from
al @, ar,bi, We get 16 terms. As an example let us consider one of them which is proportion-
al to

> ﬁk,“kzﬁltg“};45(k1 —ky,—k; +k4)7k4l(2) (1)*1(2)*1224)'-
{k}
Here, from all possible k vectors we take only those which fulfil the relation ki = k,,
k, = k,, so that we consider only:
ﬂklﬁzlalhazz = 1+ﬁ£1ﬂk1 +a£zakz+ﬁ£1ﬂk1“lt;ak2-

In this way we obtain contributions to the constant term: 6%, to the bilinear terms:

Y Ses (ofoy+Bipr), and to the biquadratic terms.
k

The approximate Hamiltonian obtained after the third transformation has the following
final form:

H = A +SAR +HQ + z (e +5e87) (n+mp) +

+ kZ’ Bk1k2(nk1nkz+nk1nkz)+ Z Bklkznklnkz (6)
12

where

Sl = (n/2No) {[X. (4, = E)/E,T" + L Gaetes-o)/Eo By
2% (A= E/E] [T In*[E,]} +
+(1/2N) [¥ (4, =E) (1=0)IE,)". (62)
40 +060 = 601 40425) = &5 € = )+ 4cf

el = [~ )EZ] (1No) 3. [1= (A~ Iy, P)E,]
2 = (Ipi*/ED) (1/No) ). ([yq]z/Eq)—Re [(7+/E?) (1/No) ) 'V;Vq—k/Eq]

¢ = (i) (A= LIED) (1No) Y. [A,(1 — LB, —1]. (6b)
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Bl(c:l)cz = (1/2N,) [(Ak,Akz - Ak1 [Vl e Ap, Vi, ’+ ?kd’;z?kz —kl)/ E4Ey,— 1] +

+(1/2No) [Ak, Ay Ex,Ery + 17 [y +Ciea— Ciey -1, — 11 (6¢)
B§£21;¢2 = (/No) [(Ag, A, — Ax, h’k;lz — A, Vi, >+Re ykly;cz'ykz—h)/ Ey Ep,+1]+
+(1/No) [Ar,Ato/ ExiEr, — 1] [k, + 8o, — Cpy- s — 11 (6d)

Now, according to the method of Bloch [3], we write the approximate temperature
dependent free energy F in ihe foim:

F = const. + ; g({ne> +<np) + kzk: BR (> <y, +
. 152

+ Y B iy + Y B ng > <ni,d +
kika kik;

+kBT[; {ngy In {ngy— Ekl Kney +1) In ({ngy +1) +

£ ; (njey In {npy — ;((nb +1) In ({nz> +1)]. )
Putting
<y = {m> = 1/(exp (el(T)/ksT)—1) ®

(according to the experiment there is only one magnon branch up to the Neel temperature),
then differentiating F with respect to {m;y and equating the derivative to zero we get
the implicit equation for the temperature dependent magnon energy

ei(T) = {1 +¢4/28 — [(Ar— V) EZSNo] X (Ag— 19 *) <np>[Eq+
+ [k ERSNo] X 174 *<ngd Eq—Re [(14/EXSNo) 3. vaba-sno>[Eq] +
+(/n) [AuCe—D/ELSNo] Y, ALy~ 1) <npd[Eg}. ®

The summation (1/N,)}_ can be changed to the intergration over the Brillouin zone. Because
q

the functions under the summation sign have the property that f(g-+#") = f(q) where A
is any reciprocal lattice vector, we can instead integrate over the unit cell of the reciprocal
lattice where each of the ¢1, 42, 93(q9 = q1b,+g.b,-+g3b3) changes from 0 to 1 (by, b,, b;
are the primitive vectors of the reciprocal lattice)

111
(1/No);(~--) = _!;jo‘_!;("')dqldQqu?v (10)

The term in (9) which is proportional to (7/n) = —0.005 for the case of Cr,O; will be
-omitted in the following part of the paper.
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From our formulae we can get as a special case the result of Bloch [3] for a simple
two-sublattice antiferromagnet with one interaction constant.

(1) = &[1+¢/2S—(1/SNo) Y. (1 =2 *(n,»];

e® = 2S|JIzE,;  E. = (1-yD)"?;
c=(1/Ny)Y (1 -E‘q 5 7= (1/2) ; exp (ik - )
q

z = the number of nearest neighbours, é are their position vectors.
This formula can be obtained from ours if we make the following replacement: 4; — 1,
Y& = Tx (—28n) — 28|J|z and make use of the fact that in such a simple case

(7k/Ek) Z (?q/ ))’q k= (Vk/Ek) Z (Vq

and similarly for the analogous summation including {n,>. In this simple case one can
write

&a(T) = &7«(T)

and «(T) does not dependend on k. This very much simplifies the calculation of (7).

4. The method of Nagai applied to Cr,0;

The temperature-dependent magnon energies can also be obtained in the approxima-
tion first introduced by Nagai [4]. Below we shall apply this method in the case of Cr,0s.
The procedure is as follows. We start with the Hamiltonian obtained in the first part of this
paper after the second transformation (4)-(4c). For simplification we shall omit in (4c)
terms including 7 (see the remark beneath formula (10)). Now the biquadratic terms in
the Hamiltonian (4) are replaced by the bilinear ones in such a way that the whole Hamilto-
nian (4) is approximated by the expression:

H = const. + Zdk(akak+b*bk)+g3kakbk+%ka b'l‘ (11)

This is achieved by replacement of the pairs of operators in (4c) through their expectation
values calculated in the eigenstates of the total approximate Hamiltonian (11).
The calculation of the averages is performed using the formula

arbiy = (Tr agby exp (— # [kgT))[Tr exp (— H#[kyT) (12)
where # is the total Hamiltonian (11) in the diagonalized form:
H# = const. + ; e(T) (afore + BLBL) (13)
so that
Cefoy = <BIBr> = 1/(exp (ei(T)/ksT)—1) = (). 14
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- In order to apply (14) in the calculations of the averages we must introduce a diagonaliza-
tion procedure transforming (11) to (13). We can write this transformation immediately
if we assume for a moment that we know &/, %;. Namely the formulae for transformation
are analogous to those introduced already in (5). The difference is only in the coefficients

of the transformation which we shall now call L{", LY instead of the previous I§", I,

af = LPof+L%b;  bf = Lo+ LB}

ap = Lo +L3°bL; by = [P0+ LBy 15)
LP® = + (oA +el(T))26(T)]"? exp (iQi/2)

exp (ipn) = Bil|Bil;  |LP1P—ILP)* = 1

eu(T) = [L2 =171 £ (—2SnEKT). (16)

Using these formulae we can calculate the averages necessary to obtain the expressions
for o/}, and %;.

Capby = (Lo +LE"BY) (LP"of + LGB =

— B (e +1/2)(e(T) an

<afbly = — By +1/2)[ex(T) (18)

Cafagy = <blbey = i< +112)[e(T) = 1/2. 19

The rest of the averages equals zero because they do not contain operators of the form

ociak or ﬁlﬁk.

Now we turn again to the beginning of our procedure, namely to the formula (11)
and wiite this formula explicitly. Instead of #°{ (4c) we write approximately

HP (2'1/N0) [Z <b1‘b >akak+<afa Sbiby+
+ kzq: <albtyyi—jarby+<ab >y, - ratbl] +
+(/No) [3, Cagby1qakax+<asbeyyebliba+
+ ; <atayyaiby+<blbyyrasby+h.c.]. (20)
Formula (20) is obtained from (4c) replacing each pair of operators through an average.

Only those terms from (4c) are taken into account for which at least one pair of operators
gives an average different from zero. Combining formulae (4b), (11), and (20) we get

= e tn{QING) T {afagy +(UINO) T <agbgdre +<albDr}  (pqp)

By, = B +n{(2/No) . <albive- o +(2/NoYy X <atag)}- (21b)
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Now we can formulate the final result. The temperature dependent magnon energies
are obtained using formula (16). This contains the averages which must be calculated from
the selfconsistent equations (17)—(19). These equations can be very much simplified if
we introduce the following definitions.

First, in complete analogy to the Nagai paper [4] we introduce the parameter u:

u E (1SNo) ¥, <alag) . 22)

Besides this, Nagai defined in his paper one other parameter, w. In our case we have to
introduce instead four parameters wy, w,, w3, ws connected as we shall see with interaction
constants Jy, J,, J3. J5 (J4 does not play here the same role as the other interaction
constants because we have excluded some terms proportional to j = 6J,). The appearence
of one perameter “w” in Nagai paper is connected with one interaction constant which

he took into account.
We assume the following definitions of the parameters:

wy £ (1/SNo) ¥ <albly exp (—ig - v)
Wy & (1/SNy) Z (a';b};) exp (—igq : v+iq - a;)
Ws £ (1/SNo) Y <albly exp (—iq - v+iq - (a; +a,))

ws £ (1/SNo) ¥ <atbty exp (—ig - v-+igla, +a,+as)). (23)

Now we can write 48, in the following form (the details are given elsewhere [8])
By, = (—2Sn)yi(ox,0505) = (—2Sn) exp (ik - v) {og +
+a,[exp (—ik - ay) +exp (—ik - ay)+exp (—ik - a3)]+
+os[exp (—ik - (a;+ay)) +exp (—ik - (a; +a3)) +exp (—ik - (a,+a3))] +
+as[exp (—ik(ay +a, +a3))]} 24

(compare with (4d)), where we have introduced the following parameters:
a . ot it
ay = ji(l—u—wy), oy =j(l-u—wy), o3=j(1—u—-ws),

as = js(l—u=ws). (25)
Similarly to 4%, we can express 7y :
ol = (=25nA4;
Ay = o +300, + 303 +as +o—6j,(1—Cp). (26)
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Now, using formula (16) and the parameters a4, a,, o3, &5 We can write the temperature
dependent magnon energy

el(T) = (=2SmELT) =
= (—28n) {[oty +30t; + 305 +t5 + o —64(1 — ()] = [ya(os apes05) 2} 2 27
[yu(ogop0sas)? = a2 4203 +3a3 +ol +
+ 2ot 0 + 40,05 +200305) (COS 27g 4 +c0s 21g, +c08 2ng3) +

+(2ay03 +201,005) (cos 2n(q 1 +q5) +c0s 2n(qy +4g3) +cos 2n(q, +q3)) +

+(202 +262) (cos 27(q — q,) +C0s 27(q — q3) +C0s 2n(g, — q3)) +
+205003(c08 27(q1 — 92— 3) +C08 27(g2 — 41 —q3) +€08 27(g3 — 41 —q2)) +

+2a4005 cos 2n(q 1 +g5 +q3).

From (23) we get the following self-consistent equations for the new parameters (replacing
summations through integrations):

111
@y = j{1+1/28—(1/S) g ,(‘; _g [oc+(3a, —6j,) (1 —cos 2mq,) +
+303(1 —cos 27(q 4 +9,)) +as(1 —cos 2n(q; +4, +43))] X
x ({ng) +1/2)/E(T)dq,dq,dqs} - (28)

111
a, = jo{1+1/2S—(1/S) £ £ j(; [o+(ety —6j4) (1 —cos 2mq,) +

+20,(1—cos 2n(g, — q,)) +a3(3—2 cos 2ng, —cos 2n(q, +4g, —4q3)) +
+a5(1—cos 21(q, +45))] %

x({ngy +1/2)[E(T)dq,dq,dqs} - (29
111
ay = j3{1+1/2S—(1/S) { { j; [o+ (s —6j4) (1 —cos 2mq,) +

+205(1 —cos 27(q, — q5,)) +2,(3—2 cos 2ng, —cos 2n(q, +q,—q3)) +
+a,(1 —cos 2n(g; +4g,))] %

X ((ng) +1/2)[E(T)dq;dq,dqs}. (30)
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111
as = js{1+1/28—(1/S) g .“; ,([ [+ (33— 6j4) (1 —cos 2ng,) +

+305(1—cos 2n(q +49,)) +a,(1 —cos 2n(g, +g, +43))] x

X ({ng) +1/2)/E(T)dq,dq,dqs}. (D)
{ngy = 1jlexp (=28nE(T)/ksT)~1] = 1/[exp (E (/) —1],
t £ kyT/(—2Sn). (32)

Comparing this result with the formula (5a), we see that the only difference is in
replacing J; through Ji(1—-u—w;), i = 1,2,3,5 which recalls the Keffer and Loudon
result [9, 10] (renormalization of the interaction constants).

There is a connection between the result for &(T’) obtained by the method of Bloch
and that obtained by the method of Nagai. One can see it expanding (27), treating u, wy,
W2, w3, ws as small parameters:

‘(:k(’-r)‘g [Sk(T)]u= ~=ws=0 + [58k(T)/au]u= =W5u +.. +[a£k(T)/aw5] —bws oWs.

Now, putting in the place of u, w,, w,, w3, Ws their values from the selfconsistent equations
(23), assuming on the righthand side of those equations u = w, = w, = wsy = ws =0,
but keeping &,(T) in the formula for {n;), one obtaines our previous formula for tempera-
ture dependent magnon energy ).

5. Numerical results

We have obtained numerical results for &,(7’) using both methods [3, 4] (in the follow-
ing part of the paper we shall use the notation ef(T) for &(T) as given by the formula (9),
ey (T) for ,(T) as given by the formula (27)), and compared the results with the experimental
data of Samuelsen [5, 6]. He has measured in detail the magnon dispersion relations for
Cr,0; at 78 K [6] and made a fit of the experimental curves to the theoretical formula
for the energy, calculated in the noninteracting spin wave approximation which was
the same as our formula (5a) (in the case when the fit was done using five interaction
constants). Samuelsen obtained in this way the values for J;, J,, Js, J4, Js. The anisotropy
constant G was taken from other experiments, and o = G/(-2Sy) = 8-10-5.

In order to obtain numerical results we started with (27). Using the similarity of the
functional form of (27) and (5a) we could obtain comparatively easily new values for
Ji, ... Js which gave good agreement between the experimental curves at 78 K and eN(T)
at the same temperature. Below, in Table IT we give both sets of interaction constants,

TABLE 11
Interaction constants for Cr,O3 (in meV) Ji J2 J3 Ja Js
Result of Samuelsen —7.53 | —3.41 —0.078 | +0.017 | =0.190
Result from the method of Nagai —6.79 —3.33 —0.084 | +0.017 | —0.215
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Samuelsen’s and ours. The new interaction constants were used to obtain eg(T) at higher
temperatures and also in the formula for ex().

In Fig. 2 we give three magnon dispersion curves as obtained by the Nagai method,
ie. s,’f‘(T), in b, (the same result would be in b, or b;) direction ([110] in the notation of
Samuelsen) for temperatures 78 K, 205 K, 291 K (Ty = 308 K), as well as the experimental

> I I | [ I [ | I [
E,, A 78K
S e 205k  Samuelsen experiments / _
& o 291K
5 2
w0l 1- 7K _
2-205K  Nagai theory 3
3-291K
30 — =
20 — -
0 -
AAO o° Bz i
Iy ; |
r | | A | | | | L |
00 02 04 06 08 g, A"

Fig. 2. The temperature dependent magnon energies for Cr,O; as obtained by the method of Nagai, and
the experimental results of Samuelsen [5, 6] at temperatures 78 K,°205 K, 291 K

results [5, 6]. The theoretical curves were obtained solving first selfconsistent equations
(28)~(31) for the parameters oy, a5, o3, &5, and then using them in (27) to get eN(T).

In Fig. 3 we show the temperature dependence of “the renormalizing factors of the
interaction constants” (1—u—w,) i = 1,2,3,5.

There exists the highest temperature, 3., at which the magnon energy becomes
imaginary, so that we have no physical solution. We have estimated that this temperature
is lying in the interval 0.60 < £}, < 0.63.

The computations were performed using Odra 1204 computer and the Simpson
approximation procedure for integration, with the accuracy parameter for this procedure
equal to 0.01.
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The formula for temperature dependent magnon energies (9) as given by the method
of Bloch can be written in an equivalent form which is more suitable for numerical calcu-
lations (see Appendix)

ex(T) = fiO +£ODy +... +£{)Ds (33)

where f{? are functions of k, not depending on e/(T) and D Dy(j = 1, ..., 5) are integrals
depending on &f(T). Therefore we treat D; as unknown, temperature- dependent parameters
which we have to calculate selfconsxstently. D(T) calculated in this way should be put

12 I [ I I I |

04 1 L I l l I
00 0.2 04 06 t

Fig. 3. The temperature dependence of the renormalizing factors of the interaction constants (I—u—wy)
i=1,2,3,5, introduced and calculated for Cr,O3 according to the theory of Nagai

into formula (33) to obtain eg(T). The energy curves g (T) calculated in this way for k
in b; (i = 1, 2, 3) direction differ very little from &}(T) for the whole considered temper-
ature range. The apprommate procedure we have used for 1ntegrat10n allows us only to
state that the values of gi(T) are lying systematically lower than &)(7), the difference being
within few percent,-so that we have not given the separate curves for eg(T). Using Bloch
method we have also found that there exists a temperature 2, above which there is no
selfconsistent solution for the parameters D; giving reasonable energy values. We have
estimated that this temperature must lie approx1mately in the same temperature interval
as f.
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6. Discussion

For some materials a good fit was obtained between the theory of Bloch or Nagai and
experiments on magnetization, susceptibility and magnon dispersion curves for temper-
atures sometimes very near to the Neel or Curie temperature [11, 12, 13]. But in all these
cases the value of Ty or T¢ was low, not exceeding 100 K. In the case of Cr,03(Ty = 308 K)
we see that there is no agreement for temperatures as high as 205 K, 291 K. May be that
for this case one should take into account the higher order terms of the Oguchi expansion,
and may be also magnon-phonon interaction.

We are very grateful to late Dr A. Wanic for suggesting the problem and for valu-
able discussions, to Dr O. Nagai for his kind comments concerning his method, to Professor
K. P. Sinha for his critical remarks, and to Mr B. Jelonek and Dr H. Rzany for their help
in the numerical computations.

APPENDIX

We shall show here how to obtain formula (33) for &f(T) starting from the previous
formula (9).

In the formula (9) we must introduce y,_, according to the definition (4d) and take
the terms depending on k outside the summation over g. A straightforward but tedious
calculations show that.we can write (9) in the form:

en(T) = ef{1+(1/2SE}) [(Ar— 7al®) = (Ar— 7id®)D1 + 194l * D2 —
—Jj1Fij1i2J35)D3—j26ii1j23is)Da—
~J3Giljsizi2i1)Ds —jsFi(isiaizi)Ds]}
where
D, = (1/No) ; @y +1) (A= 17,*)[E,

Dz = (1No) T (ng) +1) lyo*[E,
D3 = (1/No) X Fsjaisjs) (ney + DIE,
Dy = (1No) ¥, Gulisiziais) 2ned +DIEq
Ds = (1N ¥ G(jsisizir) 2<ngy +DJE,
Do = (1No) Y. FJsisiais) 2> +1)/Eq

Fi(j1j2Jajs) = ji-+ja(cos 2nk, +cos 2mk,+-cos2mk )+
+js [cos 2m(k, —k,)+cos 2n(ky — k3)-+cos 2m(k, —k3)14-
~js cos 2k, +ky+k3),
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G(j1j2jsJs) = ji(cos 2mk+ cos 2mk,+ cos 2nk;)--

+Jj2[342 cos 2n(k —k;)+2 cos 2n(ky —k3)+2 cos 2n(k, —k3) ]+
+J3[2 cos 2nk +2 cos 2mk,+2 cos 2nk;+ cos 2n(k, —k, —k3)+ cos 2n(k, —k, —k3)+
+ cos 2n(ks —ky —k;) ]+js [cos 2n(k +ks)+ cos 2n(k;+ks)+ cos 2n(k,-+-k3)],
(k = kyb;+kyby+k3bs).
Besides, there is a temperature independent relation between D;’s:
D, = j1D3+3j2Ds+3j3Ds+js De
which follows from the fact that:

{IM*(1/No) X, (2<ng> +1) 17,)° [ Eg—Re [24(1/No) ¥ (21> + 1)yt 4=/ EL} k=0 = 0

So, at the end, one can write ¢2(7) in the form introduced in (33).
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