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A new method for the approximation of the first-order perturbed orbitals in the Hartree-
-Fock perturbation theory is proposed. Combining both the expansion into a set of virtual
orbitals and a generalized product-form approximation, the present method utilizes as far
as possible the information embodied in all the available unperturbed functions.

An appropriate, simplified uncoupled Hartree-Fock variation-perturbation procedure
is also considered and analysed. The proposed uncoupling scheme is examplified by a trial
calculation of the electric dipole polarizability of the Be atom. The obtained numerical value
(6.519 A3) compares favourably with the results of more advanced perturbation treatments.

1. Introduction

The coupled Hartree-Fock (CHF) perturbation theory [1, 2] is currently considered
as the best one-electron model for the calculation of the second- and higher-order atomic
and molecular properties [3—7]. However, this theory suffers from several practical restric-
tions, and its application to really many-electron systems requires an enormous compu-
tational effort.

There are two fundamental difficulties in the practical use of the CHF method. The
first impracticability arises from the existence of so-called coupling terms [8] in the CHF
equations, while the second one is connected with the calculation of numerous two-electron
integrals. Moreover, using the form of the CHF method proposed by Stevens, Pitzer and
Lipscomb [3], one has to know an extensive set of virtual Hartree-Fock orbitals for the
unperturbed system. Thus, the CHF scheme can hardly be applied to larger systems.

To make the CHF theory tractable in the case of large atoms and molecules several
simplifications are introduced [3, 8 ]. The most mmportant one is known as the uncoupling
procedure [3, 8, 9]. The idea of this approximation lies in the partial [8] or complete [9}
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neglect of the selfconsistency terms which couple the CHF equations for the perturbed
orbitals. Sometimes, the uncoupling procedure is additionally followed by an appropriate
modification of the unperturbed Hartree-Fock potential [8, 10]. Furthermore, to avoid
the use of virtual Hartree-Fock orbitals, the perturbed wave functions are determined
by a direct application of the corresponding variation principles [8]. Amongst various
possible forms of the trial perturbed orbitals their representation by the product of the
unperturbed orbital and appropriate variation function seems to be especially useful and
attractive. This so-called product-form approximation [8, 10-12] has been extensively
utilized in the uncoupled Hartree-Fock (UCHF) variation-perturbation scheme de-
veloped by Karplus and Kolker [10].

The intrinsic restrictions of the Karplus-Kolker UCHF scheme have recently been
analysed [13, 14]. It was shown, that within the product-form approximation for the
perturbed orbitals, the validity of this simplified UCHF method can be reliably justified for
pure imaginary perturbations [13], while for real perturbing operators an extension of
the Karplus-Kolker approach is necessary. Thus, analysing the approximations involved
in the Karplus-Kolker scheme [13, 15] we found unavoidable inclusion of some two-
-electron integrals which cancel each other in the case of pure imaginary perturbations
but lead to additional terms in the Karplus-Kolker functional for real perturbing operators.
Numerical results for the electric dipole polarizability of various atomic systems [14, 16]
indicate that this improved UCHF scheme is superior to the original Karplus-Kolker
approach. However, the calculated atomic dipole shielding factors are, similarly as in the
Karplus-Kolker scheme [8, 17], far from the exact theoretical values. The observed
differences, which are especially drastic for the Be- and Mg-series [16, 18, 19], were attrib-
uted to the partial invalidity of the anticipated product-form approximaiion of the first-
-order perturbed orbitals. It was already pointed out by Langhoff, Karplus and Hurst[8]
that the product-form approximation does not shift the nodes of the unperturbed wave
function and can lead to serious difficulties for some perturbing operators.

Quite similar difficulties arise also when the Karplus-Kolker UCHF scheme is em-
ployed for the calculation of the second-order energies related to molecular magnetic
properties [10, 12]. The corresponding perturbations are expressed in terms of the angular
momentum operator [5] and the first-order perturbed orbitals do not, in general, preserve
the nodes of the unperturbed orbitals. This property can hardly be represented within the
product-form approximation. To avoid these cumbersome features of this approximation
Karplus and Kolker [12] considered a specific form of the perturbed orbitals but their
approach has no chance for general application to other than linear molecules.

Apparently, the product-form approximation of the pertuibed orbitals and simpli-
city of the Karplus-Kolker UCHF scheme are very attractive but in some cases
appropriate  extensions seem to be necessary. They should not, however, consider-
ably increase the computational effort involved in the method. In this paper we shall
discuss a more general form of the approximation for the first-order perturbed orbitals
and also the resulting UCHF schemes. The form of the trial variation functions for the
‘perturbed orbitals proposed in this paper involves the idea of the expansion into a set
of virtual Hartree-Fock orbitals as well as an extended product-type approximation.
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Obviously, a more general form of the perturbed orbitals requires a reconsideration of
all the approximations leading to various UCHF approaches.

"~ We do not consider here the CHF approach based on the proposed approximation
of the perturbed orbitals. For the CHF scheme any specific approximation for the perturbed
orbitals does not lead to a substantial reduction of the computational effort. We shall
confine our discussion to several uncoupled Hartree-Fock perturbation schemes which,
according to previous results [8, 16, 19, 20, 21], should give the perturbed energies com-
parable to those obtained in the CHF method..

2. The approximation of the perturbed orbitals

Suppose we know a complete set {u, u3, ..., u3, ..., up, ...} of the Hartree-Fock
orbitals of a given unperturbed closed-shell system with 27 electrons. Then, the first-order
perturbed o1bitals are exactly determined by the following expansion

ul = Y cud )]

p=n+1 .

with the coefficients c;, calculated from the CHF equations [3]. In practice, however,
we have at our disposal only a finite, incomplete set of m (m > n) unperturbed orbitals
and we should like to approximate (1) as accurately as possible.

~ To introduce the proposed form of the perturbed orbitals we write down (1) as a sum
of two components

ui =up+u;? 2
where
1 ! “ 0
upt =y cpup ©))
p=n+1

and u!** denotes the remaining part of the exact expression. For this part we employ the
idea of the product-form approximation [8, 10, 20]. In order to utilize the available un-
perturbed Hartree-Fock orbitals as far'as possible, we shall define here what can be called
the generalized product-form approximation:

ul* =0, Zl figktg @)
a=1
where
On=1- 21 lugy (ugl &)
.

projects out the subspace spanned by that set {uS, u3, ..., uS} involved in u°. By fi,
we denote the appropriate variation functions, usually taken in the polynomial form with
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linear variation coefficients!. In the case when f;;, = const the usual form of the first-
-order perturbed orbitals [3] is obtained.

According to (3) and (4) the proposed approximation for the first-order perturbed
orbital u} can be written as

m

m

1 1 1,b 0

up = u ) = Z Cipp +COm Z fiq"t(; (6)
p=n+1 q=1

and has more flexible form than that adopted by Lipscomb et al. [3] or by Karplus and
Kolker [10]. It is worth noting that its components u® and u}® are defined in two
mutually orthogonal subspaces of the corresponding Hilbert space. Assuming the ortho-
normality of the unperturbed Hartree-Fock orbitals, the perturbed functions (6) satisfy

automatically the necessary orthogonality conditions. [3, 8]
Cufludy +<uflujy =0 i,j=1,2,..,n ©)

Attention should also be paid to the special case of Eq. (6) when m = n. In this case
the determination of the first-order perturbed orbitals does not involve the knowledge of
the virtual Hartree-Fock orbitals which are rather rarely available in the literature.
Thus, the generalized product-form approximation

ui =ui’" =0, Zl ity ®
=

appears to be very promising from the practical point of view. Moreover, choosing an
appropriate form of the variation functions f;, one can completely avoid the node shift
problems characteristic for the Karplus-Kolker scheme. In comparison with more general
trial functions [23-25] some simplification of the resulting variation-perturbation UCHF
equations should also be obtained owing to the explicit presence of the unperturbed
orbitals in Eq. (8).

3. The uncoupling procedures and additional approximations

In what follows we shall keep as far as possible the notation used previously [13, 14].
For the one-electron perturbation the best first-order perturbed orbitals are determined
by the extremization of the CHF functional [8]:

Jeuplui] = Cuilh®—el(uf> +<uflh' —eflufy +Cuf|h' — e u; >+
i j:L-:l 2—0;p [(“il“?IG12[“?u11‘> +<ui1u;|G12|u?u})>] . : &)

It was shown [8, 14, 23, 24], however, that the non-diagonal (i # j) coupling terms in
Eq. (9) should not contribute significantly to the calculated second-order energy. Omitting

! In general the approximation (4) can lead to linear dependencies in the basis set ( fiquqo) resulting in
the instability of the corresponding variation solution. These eventual linear dependencies should be removed
in the first step of the calculation by using an appropriate linear transformation [21, 22].
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them we obtain the functional of the UCHF scheme known as the Method &’ of Lang-
hoff, Karplus and Hurst [8]:

']UCHF,b"[uil] = Cuf|h®—efluiy +Cui {h' —ef ul >+
+<up|ht —effuly +<ulu?|Gyolului Y +<uiui |Gy luful). (10)

This functional corresponds to the most sophisticated uncoupling procedure and appears
to be superior to the other UCHF schemes [8, 26], because it omits a spurious electron
selfinteraction [26, 27].

To proceed further we shall consider this UCHF scheme as a background of our
analysis. Substituting the trial function (6) into the functional (10) we obtain

Jucar,[#i] = Jocar,p [ ]+ Tucur,v [+ o (1)

i.e., the original functional separates into two independent functionals Jycyg  defined in
two mutually orthogonal subspaces {#}**} and {#/*}, and some cross terms included

in Jy
Ty = <ul|h® =&l [u"y +ui* |0 — el ju; > +
+ U ud |G juful Y + (ul"ul |Gy juui ) +
+uPui |Gy lududy + Cuitui |Gy lududy. (12)

Taking into account the definitions (3) and (4) we can easily realize that the first two terms
of (12) vanish identically. From the practical point of view it would be very useful to
have a complete separation of the functional (11) into two independent parts. To achieve
this we have to put all the two-electron integrals appearing in (12) equal to zero. This
approximation has some numerical justification.

Recently we have proposed a new UCHF scheme based on the simple product-form
approximation for the first-order perturbed orbitals and taking advantage of the complete
neglect of all the non-Coulomb two-electron integrals [16]. The numerical perturbation-
-like analysis of this approach [14, 16] shows that the contribution of the Coulomb-type
two-electron integrals is the only important contribution in the Method 4’ of Langhoff,
Karplus and Hurst [8]. Assuming a more general validity of this result we can drop out
the cross terms in (11). It can be easily shown that J,, contains only two-electron integrals
of non-Coulomb form, which according to the computational experience, are much
smaller than the Coulomb ones. Evidently, a more complete numerical analysis of the
proposed approximation is desired.

Neglecting the terms involved in J,, we can separately analyse the contributions
of u** and u}* to the second-order energy. However, both the functionals appearing in

- Jyeurlui] = Jucurp[ui ] +J venrp [’ (13)

are still very complicated from the computational point of view — they contain numerous
two-electron integrals and therefore, cannot provide a simple tool for the calculation
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of the second-order atomic and molecular properties. Concerning the first part of Eq. (13)
a simple but accurate procedure has recently been proposed by Caves and Karplus [26].
According to these authors we neglect in Jycur,y [}**]all the two-electron integrals which
contain more than two different orbitals. Thus, a complete functional

m

g * 0 0y
Jucarp[#:i*] = Y cucile, —e))+
r=1+n

0,0 ) 0,0 0 3
+ Z [clrcls<u Uu; [G12|u u >+ctrcis<urus|612lui u?>_'+

rs=n+1

+ Y [enurih! —euly +cpudlh —ef [u])] (14)

r=n+1

is reduced to a simplified one

Ja[uil’a] = Z [c,,c,,(e 0) +c;,ci,<ufu?|G12|u?u,?> +

r=n+1
+ctrclr<u u, IGIZIu u°>+c,,,<u°|h1—e |u0>+
teaulht e u>]. 15

It should be mentioned that this reduction is only partly consistent with that involved
in the approximation J,;, = 0. In (15) we keep some most important exchange-type integrals
and there is no numerical evidence for their neglect. Probably their influence should not
be very large and they could be omitted at the next step of approximation. The numerical
results presented by Caves and Karplus indicate that this should even improve the results
for pure-imaginary perturbations [26]. Nevertheless in what follows we shall keep this
simplified UCHF functional in its form given by Eq. (15).

To consider the second part of the functional (13) we perform the appropriate substitu-
tions and obtain

L m B
JUCHF,b'[“il’b] = Z {(uilriho_egluils>_.

rs=1

m

= X upluisy Cuilugy (e —ef) +
+<ui1ru?|G12|u uls>+<utru1s[G12|u u; >'—
= X, [Cublul> g |Golufuiey +Culuy Cuguf|Gyalufu?y +

+(u > <“k“ |G12|u0u0> +<“zsI“1?> <“i1r“I?|G12iu?u?>]+

+ Y Kupwdd uflusy Cuguf|Gyyluful> +
kl=1
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+<u1riuk> <uts|ul > <u£u?i612iu?u?>] +

m .
+ Y [Kuilh' —eiui> +<ulin' —efug,> —
r=1

= Z (AT <u;?lh1—_??|}4?>+<uz?iui1r> ui|h' =i lug))]} (16)

where
uvilr = firu? Omn (17)
It is worth attention that almost all physically significant perturbations satisfy the
condition

<uu|u0> = <fu z|u0> = 0 (18)

automatically due to symmetry. Thus in agreement with previous assumptions we can
neglect all the two-electron integrals which follow from the orthogonality conditions.
Such an approximation has been investigated for a simple product-form of the first-order
perturbed orbitals and was shown to be a very good one [16]. It can be easily seen that the
neglect of the two-electron non-orthogonality terms corresponds to the complete neglect
of the non-Coulomb integrals, provided Eq. (18) is satisfied. To make the treatment consist-
ent we have also to neglect? all the non-Coulomb two-electron integrals in <uiuf |G, |uduil)
and <uuuzs|G12|u; u;>

~ Obviously, the same approximation should also be applied to the first term of the
functional (16). According to the usual definition of the Hartree-Fock Hamiltonian #°[13]
we obtain

Cuplh®—elluly = Cupluly (€2 —ed)+
+ 3 IV Vlud> + 3 (i Vil IVfisuld —
— IV VU +
+ X DOl (D) (2)) ~

— Sy (DuF2)1r 17 [u§(1) f(ug(2))) (19)

where the two-electron part of (19) arises due to the non-local character of the Hartree-
-Fock potential [29]. Neglecting also in this part all the non-Coulomb-type two-electron

? It should be mentioned that we treat the two-electron integral <ulpuf |72 |uduly> (Cubptetglr it udu>)
as the Coulomb one, if i =p andj = q(p = j and q = i), i.e., the corresponding integrals are classified
with respect to the presence of the unperturbed orbitals. Because of the f;, functions the present terminology
is somewhat different from that commonly used [28].



716
integrals we finally obtain the simplified UCHF functional

Tt = 3 [Cubiud) € —ed)+

r,s=

+ 3 ) (Vfsp - Vfislud + 3 (o Vi (Vi) —

~ VSV~ T CuSlub Cubluf (¢ —e)]+

+ é(<ﬁ,~(1)u§-’(1)ﬂ'}(1)u?(2)ir[2‘lu?(l)u?(2)>—

— S (DuiDu§Q)ir 3 [uj DS 2u2))) +
+{fulDu(Dfa(Dud2)lrry [ (Dui (2)) +
+{fuDuf (DUl 1 [ (Df:2uf (2)> —
— Sl Du?Duf @)l 1 (Dfi Duf (2)) +
+{ Sl DulDfDud @i [ (D (2)) +

+ Y [Cublh e [udy +<ul | — e lug > —
r=1

- kzl (Cuipluy Cuglh* —ejuly +uglugy <uflh' —e; [ug )] (20)

which approximates the functional Jycyr v [4*] of Eq. (13). Some properties of this
functional will be discussed and analysed in the next Section.

4. Discussion and conclusions
The total approximate UCHF functional proposed in this paper
Jui] = J[ui ] +J4[ui "] ey

separates into two independent parts J, and J, defined by Eq. (15) and Eq. (20), respecti-
vely. The properties of the functional J, and some numerical examples of its application
have been discussed by Caves and Karplus [26]. Due to the separation of J, and J, the
same conclusions are also valid for the contribution of J, to the total functional (21).
Thus, we can confine our discussion only to this part of (21) which follows from the genera-
lized product-form approximation for the first-order perturbed orbitals.

To simplify the notation we denote by J; all the one-electron integrals contributing
to (20) and by J, this part of J, which contains only two-electron integrals

Jp = Ji+ /s (22)

It is worth attention that for a simple product-form approximatidn, ul = fuf 101, J,
becomes identical with the Karplus-Kolker functional. Within the same approximation
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J1=+J, is equivalent to the functional of the improved UCHF scheme proposed recently
[13, 15, 16]. It was also shown [13, 15] that the final form of the corresponding functional
depends on the character of the perturbing operator A!. Therefore, one can also obtain
some further simplification of the functional (20) by a separate analysis of real and pure
imaginary perturbations. Apparently, the one-electron part J;, which can be easily calcu-
lated, does not deserve particular attention and we shall consider only the two-electron
terms appearing in Jj.
If h' is a real one-electron operator, then the following relation

fis =1

is satisfied and J, is reduced to
2= 2 (g3 figuf lufu§]— [ foudud | fiuful]) +
JH£L

+2[Fulu?| fruful] (23)

where
1
[alaz...lblb'z...] = Jfal(l)az(l)... S b1(2)b2(2)...dvldvz.
1

In the case of pure-imaginary perturbations we obtain
Ji = 1
and

n
= _; (L33 fiu3luud] —Lfiudud) fiudud]). (24)
JFL

It should be pointed out that in order to simplify the notation we assumed that all the
unperturbed orbitals are real.

Comparing the functionals (23) and (24) with those previously derived [13, 16] it
is worth noticing that the generalization of the product-type approximation for the first-
-order perturbed orbitals leads unavoidably to additional two-electron integrals. The
numerical calculations indicate that the two-electron terms for j # i entering (23) and (24)
are not negligible. A complete neglect of these terms can only be justified within a simple
product-form approximation for u; [13, 15]. Thus, the present simplified UCHF variation-
-perturbation procedure based on the functional (21) requires the calculation of some
two-electron integrals. However, their number is much smaller than in the corresponding
formulation of the Method b’ of Langhoff, Karplus and Hurst [8]. On the other hand, in
comparison with Karplus-Kolker scheme [10] the present approach makes the trial
variation function more flexible and should be very fruitful when the node shift problems
appear.

It should be also pointed out that the form (6) of the variation function utilizes as far
as possible the information contained in the available unperturbed Hartree-Fock orbitals.
The most important term of u;°, i.e., f;uf possesses all the nodes of the unperturbed orbital
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ub and this property should be reflected in good convergence of the method. Similar
features of the product-form approximation has been noticed previously [8, 13, 16, 17,
30-32]

To get some information about the validity of our assumptions we have performed
pilot calculations of the electric dipole polarizability of the Be atom. The unperturbed
Hartree-Fock orbitals u), u3, were taken from [33]. However, the excited orbitals have
not been published in this source and we restricted our study to the generalized product-
-form approximation (4), i.e., to u; given by Eq. (3) with m = n = 2. For the electric
field directed along z axis the first-order perturbed orbitals were expressed in the form

1

u; = uil,b = fi,lsu(l)s+fi,2su(2’s (l — 1S, ZS) ' (25)

with
Ju = AiqeO r +Aia,1z (q = 15, 29) - (26)

and Ay, Ai,; being the variation parameters. Thus, four independent parametets
have been used for each perturbed orbital. Because of linear dependencies in the basis
set {f;,ul} observed for f;, with more than two terms, we did not attempt in the present
paper to analyse the convergence of the method. The coresponding calculations with
removed linearly dependent terms for more extensive representations of ﬁq are in progress.

Extremizing the simplified functional (20) introduced in the present paper we obtained
the electric dipole polarizability of Be atom equal to 6.519 A3. Within the same approxima-
tion for the first-order perturbed orbitals the Method b’ [8] (functional (16)) gives 6.310 A3,
while the best result of this method is 6.736 A3 [26]. Thus, the present simplified UCHF
scheme leads to remarkably good agreement with the results of more complicated appro-
aches. It is also worth noting that the best CHF values published in the literature are
6.758 A3 [23] and 6.759 A3 [34].

The present results should also be compared with those obtained within the simple
product-form approximation for the first-order perturbed orbitals. In this case both the
CHF scheme and the Method b’ lead to 6.26 A [8]. The simplified variation-perturbation
UCHF procedure proposed in [13] gives 6.24 A3, Thus, it follows that the generalized
product-form approximation removes the bounds imposed by the simple product-form
of the first-order perturbed orbitals and provides a better representation of the effect
of the external perturbing field.

A test of the accuracy of the first-order perturbed orbitals can be obtained by the
evaluation of the dipole shielding factor [2, 8, 18]. However, the result for this quantity
can hardly be expected to be successful within rather short representation (26) of the
variation function. Nevertheless, the present result (2.26) is better than that obtained by
using the Method b’ with simple product-form of the first-order perturbed orbitals (2.66 [8]).
More extensive calculations of the electric dipole polarizability and dipole shielding
factors for the Be atom and other atomic systems are in progress. The approach based
on the functional (21) is also applied to the calculation of molecular magnetic properties.
The results of all these calculations will be published separately.
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Finally, it should be pointed out that the present scheme can also be considered
from the point of view of Sinanoglu’sideas of Varied Portions Approach [35,36]. According
to [35] the validity of any simplified UCHF procedure can be justified if the terms neglected
in the CHF functional do not contribute significantly to the corresponding second-order
energy. Moreover, all these neglected terms can be accounted for by using an appropriate
perturbation procedure. A similar technique has been used previously in the analysis
of the Karplus-Kolker approximation [14] and provides a good estimate of the CHF
result without solving the corresponding coupled equations.
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