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MOLECULAR CONSTANTS OF DIBORON TETRACHLORIDE
AND DIBORON TETRAFLUORIDE — GREEN’S FUNCTION
ANALYSIS
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(Received March 24, 1972)

The Green function and partitioning techniques are applied to diboron tetrachloride:
and diboron tetrafluoride. A new set of isotopic rules are formulated. The molecular
constants like the potential energy constants, mean amplitudes of vibration, rotational
distortion constants and Coriolis coupling constants are calculated.

1. Introduction

It has been well established [1-6] that in molecules having high symmetry and differ-
ent isotopes, the Green function analysis is quite successful in arriving at the exact force
field. Since the boron compounds, especially those containing boron-boron bond are
abundant in isotopic data, the Green function analysis can be applied to determine the
exact force field for these molecules. The present paper deals with the applicability of
Green’s function analysis to the molecular force field of diboron tetrachloride and diboron
tetrafluoride.

Diboron tetrachloride and diboron tetrafluoride have been subjected to a large
number of X-ray diffraction and electron diffraction and Raman and infrared measure-
ments. Recent electron diffraction measurements of Ryan and Hedberg [7] on B,Cl,
and infrared studies of Nimon et al., [8] on B,Cl, and B,F, isolated in a matrix of solid
argon at liquid hydrogen temperatures along with the Raman spectra of the two com-
pounds have established the staggered ¥, configuration for these molecules. Quantum
mechanical calculations [9] on the energy of the potential barrier for B,Cl, are reported
to be 1.67 KCal/mol and 1.85 KCal/mol, and 0.003 KCal/mol for B,F,.

The vibrational spectral data given by Nimon et al., for B,Cl, and B,F, along with
t_he electron diffraction data of Ryan and Hedberg for B,Cl, and the X-ray diffraction
data of Trefonas and Lipscomb [10] were used in the present calculations. These are
summarized in Table I.
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2. Isotopic rules for X,Y, — X, 1Y+ molecules

In deriving the isotopic rules the well known Green’s function analysis was used.
X,Y, staggered type molecules belong to Dz4(= V) point group and have nine distinct
normal modes which fall under 3@, + 15, +2b,+3e irreducible representations. Of these
1b, is Raman active but has not been observed. However, Gayles and Self [11]suggested
the poss1b1]1ty that this mode may have a value of 150 cm~! from the combination
bands.

The isotopic rules for the different vibrational species were derived by solving the
secular determinant [2]

lew? G(w?)+1) =0 1)

where G(w?) is the Green function for the unperturbed molecule, @ the frequency of
vibration, I the identity matrix and & = (m'—m)/m (m’ is the mass of the substituted
isotopic atom and m is the mass of the original atom). The Green function for the unper-
turbed molecule is related to the matrix of transformation / between the normal and mass
weighted Cartesian coordinates. To obtain /, a set of orthonormalized Cartesian symmetry
coordinates S which includes both rotations and translations was constructed. A linear com-
bination of these symmetry coordinates with a proper “mixing parameter” will yield a set of
normal coordinates. The main difficulty lies in the determination of the proper combination
of symmetry coordinates with suitable mixing parameter to represent the actual normal
modes. The choice becomes difficult if there are more than two normal modes of vibration
in'a single species. For example in the present case there are three normal modes of vibra-
tion in @, species. There are three possibilities of writing down the normal coordinates:
two mixing parameters between the three symmetry modes, or one mixing parameter
for any two of the symmetry modes and treating the third one itself as the normal mode or
treating all the symmetry coordinates as truly representing the normal modes. Assuming
the first possibility the equations were solved with two mixing parameters, which led to
imaginary results for the mixing parameters. The proper combination of the symmetry
coordinates which gave the real solution for a; species is given below.

Q1 = (S1+aS2)/ V 1+a2

0, = (S;—aS)/V1+a @

Q3 = 8.
The b, species, where there is a single torsional vibration, is not considered here.
For b, species,

05 = (Ss+bSe)/V/1+b?

= (Se—bSs)/~/1+b 3)
For e species.

None of the combinations with one or two mixing parameters yield real values for the

mixing parameter. Hence the symmetry coordinates themselves were taken as the normal
coordinates. In the above equations a and b refer to the mixing parameters, S1,S,,85 etc.
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are the external symmetry coordinates (given in Appendix A) constructed from group
theoretical methods.

The frequencies of the isotopically substitued XY, molecule can be obtained from
equation (1) and the perturbation associated with the six rows of the / matrix representing
the two X atoms. The resulting determinant is a quadratic polynomial in @?. In the present
case the determinantal equation (1) takes the form,

{[e0?G1(@0?) +1F - [e0?G15(0®) PP} { [e0?G33(0?) + 112 = [60?G36(@?)]*} = 0 (4)
taking into consideration that G,;(w?) = G,,(0?) = G33(0?) = Gu(0?),
G15(0%) = Gs51(0?) = Gr4(0?) = G4y(0?), G33(0%) = Ggs(@?) and G36(0%) = Go3(0?)
TABLE I

The observed vibrational frequencies assignmenis [8] in ém“ and the molecular parameters [9, 10] for
B2C14 and B2F4

Vibl'a.tional Species 10B2C]4 11B2C]4 1oBzF.g 11B2F4
a ; 1177.0 1128.6 1456.6 1398.2
w, 401.9 399.6 676.0 672.4
w3 176.9 176.0 319.8 319.2
b, ws 750.7 724.9 1187.0 1154.7
ws 289.3 288.2 545.3 541.9
e , 950.9 912.2 1413.1 1366.3
g 105.0 105.0 144.0 144.0
s 540.6 517.9 686.0 657.3
Rp_p =1.702 A Rg_p=1.674A
re—ct = 1.75 A rp—r = 1.32A
@ = CIBCl = 118.65° @ = FBF = 120°
¢= BB Cl = 120.67° @ = BBF = 120°

and that all other Gj; are zero. Solutions of equation (4) give the frequencies of theisotopi-
cally substituted molecules. The various isotopic rules derived are given in Appendix B. The
values of the various mixing parameters are, for B,Cl,, a = +0.347564 and b = —0.431861
and for B,F,, a = +0.396165 and b = —0.609854.

3. Potential energy constants

Using the mixing parameters, the symmetry force constant matrix was obtained from
the relation [3]
F = B-' 4AAB~ ®
where A is a diagonal matrix whose elements Ax defined by

Ag = 4n2C2wk ©
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Here, C is the velocity of light, wg is the vibrational frequency of the K'® mode, B is the
transformation matrix between the internal and external symmetry coordinates and 4 is
the unitary matrix of the mixing parameters. It is of interest to note here that the quantity
BA is equivalent to the L matrix. Thus we determine this quantity purely from the isotopic
frequencies without assumptions regarding the force fields. Thus this method has an

TABLE II
Symmetry force constants and important valence constants in mdynes/A
7 elements B,Cl B,F. Valence constants

B,Cl, | B.F,
Fi; 3.8701 6.6880 /R 3.8701 6.6880
F,, 4.8612 3.4975 fr  3.5531 5.5209
Fi3 0.6606 0.5903 fe 03117 0.6863
Fi, —2.7571 —2.8841 fo 01211 0.3392
Fis 0.9003 1.6553 Sre —1.3785 —1.4421
Fy3 —1.3693 —1.6254 Sfra —1.1648 —1.6803
Fis 3.0954 7.4954 '
Fse 0.2746 0.4687
Fis 0.0234 —0.3149
Fqq 3.1278 5.5454
Fgs 0.0863 0.1039
Foo 0.2325 0.3352
Frg 0.0699 0.0721
Fo 0.0419 0.0623
Fgo —0.0823 —0.0887

added advantage over the various kinematic methods for evaluating the force constants
wherein the L matrix is generated purely from the geometry of the molecule. The symmetry
force constant elements. obtained using equation (5) are presented in Table II along with
the important valence constants.

4. Mean amplitudes of vibrations

The mean square amplitude matrix (Z) for the various atom pair was obtained from
Cyvin’s relation [12]

Z =LAL )
where 4 is a diagonal super matrix with elements,
h h
Ag = ——cOth —ok ®)
8n cwg 2KT

Here 4 is the Planck constant, K the absolute temperature and ¢ the velocity of light.
The important mean vibrational amplitude -quantities are presented in Table III.



639

TABLE IIL
Vibrational mean amplitude quantities in A
B,Cl. B,F,
or 0.0614 0.0522
o 0.0621 0.0564"

5. Rotational distortion constants

The rotational distortion parameters for vibration-rotation interaction given by Wilson
and Howard [13] and Nielson [14] are

K a*®a?? .
h,55 = — - 9
m =" R, Z o7 )

where «, 8, y and 0 can be in turn X, y or z. If these parameters are expressed in MHZ,
the constant K assumes the value 5.7498 x 108, the vibrational frequencies in cm~! and the
components of moment of inertia tensor Iy, evaluated for the ground state and in the centre
of mass of the molecule and the coefficients a% are expressed in a. m. u. A2

The coefficients a? in terms of the / matrix elements and of the equilibrium Cartesian
coordinates, ag, fx and yg takes the form [15]

ai* =2 ; mE(BRli+vxlkd (10)
aff = ~23 miogfr(a # B) (1n
K

where my is the mass of the K™ atom. The calculated distortion constants are given in
Table IV.

TABLE IV
Rotational distortion constants in KHZ
Molecule Dy Dg Dk
B.Cl, 12.1727 46.9129 77.0646
B.F, 53.1135 414.7672 786.6440

6. Coriolis coupling constants

The values of the Coriolis coupling constants ({) for the doubly degenerate species
were determined from the / matrix using the relation given by Meal and Polo [16] i. e.,
¢ =IMT
A=X,P,2
where « denotes the axis of rotation (here we have considered the axis lying along the
B—B bond alone) and M is a block diagonal super matrix made up of » identical (3 x 3)
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submatrices, one for each atom. The obtained { values were found to obey the sum rule

for this type of molecules i. e.,
E : I,
b= 21,

where I, and I, are the moments of inertia along the respective axes. Théy are given in
Table V.

TABLE V
Coriolis coupling constants

Molecule
B2C14 B2F4

Ls 0.2559 0.1935
I 0.0156 0.0191
Zg 0.2715 0.2126

i

L 0.2715 0.2126
73 2 .

7. Results and discussion

It is seen from the Appendix B that the'isotopic rules obtained here essentially
reduce to those of Redlich-Teller product rules and that these rules are derived independ-
ently without assuming the force field model. The fact that the mixing parameter (which
is the most important factor in the present calculation) is able to reproduce all the molecular
constants within reasonable limits shows the validity of the method used in the analysis
of the force field for the molecule under consideration.

Nimon et al. carried out a normal coordinate analysis for these molecules using two
Urey-Bradley-type force fields and have found that the GUBFF is satisfactory for both
molecules whereas UBFF is adequate for B,Cl, only. This has led them to conclude that
there exists a strong interaction along the coordinates connecting the X type atoms on
opposite ends of the molecules while such interaction is small in B,Cl,. However, the
present force field analysis yields a uniform result for all the molecules. Thus we may
conclude that the Green function analysis yields a suitable and probably the reliable
force field for these molecules.

It may be noted that the values of the force constants obtained here are considerably
higher than the ones reported by Nimon ef al. This might be due to the different procedures
used in the evaluation of the F matrix elements. As has been pointed out earlier, the
advantage of the Green function analysis lies in generating the force field without any
assumptions. Hence no restrictions were imposed on the off diagonal elements. Perhaps
this may be the reason for the difference in the values of F matrix elements. From the
results given in Table II the following points may be noted. The value of the B —B stretching
force constant is 6.688 mdynes/A in B,F, and 3.870 mdynes/A in B,Cl,. The value of
B—B stretching constant 3.870 md/A in B,Cl, compares well with the value of Nimon
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et al. The value for B—B stretching constant in B,F, appears to be high compared to
Nimon et al’s, value (4.21 mdynes/A). Cyvin [17] reports a value of 6.29 for B—F stretch
and 3.05 mdynes/A for B—B stretch. This might be due to the fact that Cyvin has used
624 cm! as the vibrational frequency corresponding B—B stretch as reported by Gayles
and Self [11] while Nimon et al., have established 1380 cm~! as representing the B—B
stretching mode. The isotope shifts obtained are also consistent with this assignment.
Since there is a considerable difference in the frequencies of B—B stretch in B,Cl,
and B,F,, it is probable that the value of fgp is considerably higher in B,F, than in B,Cl,.
There is also a considerable difference in the B—B bond length values (1.67 A in B,F,
and 1.702 A in B,Cl,). As such it is expected that B—B stretch in B,F, should be higher
than in B,Cly as has been found in the present case. However, no such marked change has
been noted by Nimon et al. Our fgy is also in good agreement with the value of 3.4 mdynes/A
in B,Cl, and 3.5 mdynes/A in B, molecule reported by Becher and Schndckel [18]. The
high value in B,F, may be due to the high electronegativity and reactivity of fluorine atom.

The BF stretching force constant of 5.52 mdynes/A and BCI stretching force constant
3.55 mdynes/A compares favourably with the value of 6.13 mdynes/A and 3.36 mdynes/A
reported by Nimon ez al. The values of the bending force constants f, and f, are quite
small and are in the expected range of values. However, the values of fg, and f,, representing
the interaction between the B—B and B—X bonds and B—X and XBX angles are high,
greater in B,F, than in B,Cl,. They are also negative. "

From Table I1I it is seen that the calculated values of mean amplitudes of vibration
of B,Cl, [opg = 0.0614 A, 65_¢; = 0.621 A] compare well with the electron diffraction
values of Ryan and Hedberg [opg = 0.05 A, o5_¢; = 0.0562 A]. The values of the B—Cl
and B—F distances and the corresponding force constants compare favourably with
BCl; and BF; values. The corresponding B—B distance and the fg5 are not much different
from the values found in boron hydrides. (In B,Hs, Rp_p = 1.762 A and fyp =
= 2.5853 mdynes/A) [20]. The B—Cl and B—F distances compare well with the sum of the
radii (rC, = 1.035 and rg = 0.81 and rg = 0.72 and rg = 0.81) [19] so that one would
expect a normal B—B bond equal to twice its radius sum (1.62 A) instead of a bond
characteristic of electron and orbital defficient compounds, as suggested by Ryan and
Hedberg [7]. This is probably due to the fact that the utilization of the fourth stable boron
orbital for partial double bond formation with chlorine is less complete. In such a case the
residual positive charges on the boron atoms arising from the partial ionic character of
the B—ClI bonds would, by mutual repulsion tend to lengthen the B—B bond. In the case
of B,F, also the same conditions exist. Perhaps this may be the reason for the large negative
values for the f3, and f;, interaction constants.

The rotational distortion constants obtained for these molecules are presented in
Table IV. As is expected the values obtained for B,F, are higher than those for B,Cl,.
All the calculated values of the Coriolis coupling constants are found to satisfy the { sum
rule for these molecules as shown in Table V.

One of the authors (G. S.) is greteful to the University Grants Commisions, Govern-
ment of India, New Delhi, for the financial assistance by the award of a Junior Research
Fellowship.
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APPENDIX B
Isotopic rules for X,Y, = X 1Y, molecules
a, Species: |

2 o ANol+od)+(@ el +0))
@itz = A(1+e)

2 2

wizwiz _ @10,
1%2 —

(1+e)

2
iz _ W3

T (1+e)

where A% = (1+d?).

b, Species:

2m(b*w? +wl)+B*(d} +em,) (03 + wd)
B?d3(1+¢)

wizwiz — O)sz (emx'{T dlz)
STe T T (1 +e)d}

i2 i2
()3 +w6 =

where B* = (1+b?).

e Species:

- A E (2 + 02+ 02) + Eo(02 + 0}) + E5(w0 + ©3) + Eq(0F + 0§
(@ + o + ol _ [Ey(@F +0f + w5) + Ex(@7 + wg) + E3(ws + ) + Eg(w7 + w5) ]

e (Ey+E;+Es+E,)
(wizwiz + wizmiz o wizwiz o [El(wgwg + a)gwg + (D%(Dg) + Ez(l)?](l)g + E3CO§(D§ +E4CO§CD§]
7Wg 8 Vg 709) = (E1+E2+E3+E4)
wizc‘oizwiz o Elw-z,a)écog
TS T (E{+Ey+E3+Ey,)
where
E, = (em>+d?) K*M>*N?,
E, = 2mim,dir*c* K2 M?,
E5 = 2m,diS?M>N?
E, = 2mmd;K*N?
and

&= (m:c_mx)/ My.
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