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ON THE MECHANICAL RESPONSE OF A NON-UNIFORM
PIEZOELECTRIC TRANSDUCER WITH ELASTIC COMPLIANCES
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The mechanical response of a non-uniform piezoelectric transducer with a damping
characteristic of its elastic compliances is evaluated. It is seen that the response emitted is
essentially similar to that for a transducer with compliances having uniform characteristics.

1. Introduction

In recent years there have been a large number of investigations on the responses, elec-
trical and mechanical, of piezoelectric transducers in view of the use of these materials in
ultrasonics. In support of this, the important works of Redwood [1 ], Mason [2], Filipczynski
[3], Sinha [4], [S], Giri [6] and of others.may be mentioned. But, in all these studies,
the assigned inputs are always either a step function of force or of voltage and the discus-
sions are mainly confined to the consideration of transducers having homogeneous material
parameters. It is well known that crystals, particularly the piezoelectric ones often contain
impurities which make them inhomogeneous. Olszak [7] has discussed the various types
of inhomogeneities of material parameters of piezoelectric crystals. In this connection,
the works of Chakravarti [8], Sinha [9] may also be noted. Again, in all these studies
transducers having elastic compliances which remain entirely invariable with regard to
time have been discussed.

In the present note, the elastic compliances are assumed to be partly constant and
partly time-dependent. This assumption on the nature of elastic compliances is justified by
the behaviour of electrets [12] and also by the similarity that the electrets have with
piezoelectric materials [1]. The nature of non-uniformity considered in the present paper
is in the sense used by Redwood and Mitchell [11]. The electric excitation considered is
also in accordance with Redwood’s assumption. Finally, the method of transform calculus
has been used to facilitate the solution of the problem.
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2. Fundamental equations and boundary conditions

Let us consider a piezoelectric-plate transducer, the thickness direction of which is
taken as the x-axis. Let x = 0 and x = X be the two extremities of the transducer. The
electric excitation, according to Redwood’s [11] assumption is taken to be

T . hD = ho(1+Kx) H(t), M

where #-and-D arebthe piezoelectric parameter and the electric flux density, 4o and K are
constants. H(?) is the Heaviside unit function defined as follows

H(t) = 0, when £ <0
=1, when ¢ > 0. 2

The other end of the transducer is assumed to be held rigidly at the back. The fundamental
equations of the problem are

T=c (g) —hD 3)
Ox
o%¢ orT
S | &

Here in accordance with the assumption, the elastic compliances are taken as

0
C=C+C,— 5
1+ 25 ®)

where C; and C, are constants. T is the mechanical stress, ¢ the density, £ the displace-

ment etc.
Combining equations (3), (4) and (5) we get,

o\ 0% o*
<C1+C2 ‘“>'x—£ —@ —6—5— = hoKH(?). (6)

Taking Laplace transform, we get

d*é cal hoK
_§_<_L>§=’°,_. Q)
dx Ci+Cyp p(C,+Csp)

Tts solution

) S T
{=Aex (—'P\/ x> +B exp(+ \/ x) - — ®)
P Ci+Cyp P Ci+Cyp op’

where 4 and B are functions of the parameter p.
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The equation of force for the non-plezoelectnc transducer as in Redwood [1] can be

taken as
— +
F=ch{ Aexp( L )+Bexp( fx)} )
where
= (10)
4
and
Z, = gus. an

The corresponding equation for the piezoelectric transducer is

- Sho(1+Kx Lo
F+0(—)=SP\/Q \/C1+C2p{—Aexp(—p\/Lx)+
p ' C1+,C2P

+ B exp (+p \/C1 +QC2p x)}, (12

The most general problem of this type can be thought of as consisting of a transducer
of impedance Z, situated between the materials of impedances Z; and Z,. Then the condi-
tions of continuity of the force and displacement at x = 0 and x = X provide the equa-
tions which when solved will yield the values of the constants like 4, B, etc.

These conditions are

(a) at x =0, Fr)o = (Fo

€1 = (©)o (13)
(b) at x = X, (F)x = (F)x

€)x = Ox (14

where the suffixes 1 and 2 represent the relevant quantities at x =0 and x = X
respectively.
3. Solution of the problem

To siniplify the calculations, we assume the transducer to be fi;gidly backed at the
end x = X. So we can take
A2'=BZ=A1 =0.

Hence, from the continuity conditions of force and displacement we have the followmg
set of equations

. @ » X e ho
Aexp(—p\/—-x)+Bexp(+p\/——x>—————0 15
Ci+Cop Ci+Cyp - ep (15)
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e L Sh
Spve vC +Cyp (—A+B)— _132 = pZ,B, (16)

a7

Solving these equations we obtain

Sh hoKZ —2 _x hoK e
<__°_ 0 1) +p]/c,+cm - ;"? {Z,~SVoC,+C,p}

2
A p ep’ (18)
+p1/ -2 —x e -pl/+2—x — Ee
P‘/Cx+Czp {Z1+S \/Q \/C1+C2p}-—-e pl/C1+C2p {Zl—S \/Q \/C1+C2p}'
hoK — Sho hoKZ - V_e x
\/C1+C2P}+ curer
B = o (19)

e pl/c”c”’ {Z,+5 Ve VC +Cop}—e VC”C“’ {Z,~5Ve VC,+C.p}
Substituting these values of 4 and B in the equation for (), and simplifying we get

—{0Shop+hoKS Vo V/C,+Cop}
ep*{Z+S \/Q \/C1+C2P}

- = C
= {98h0p+hoKs Ve Ve, \/p+ 61}

= N Q1)

op {z1+s Veve, \/p+ gz}

(©o = (20)

Let us suppose

Ci_ 4
C,
s = ~Shy __ hKS Ve 1/6; _p\/E“ _
' PZ{Z1 +S \/0 \/Cz \/p+a} QPS{Z1 +S \/9 \/Cz \/p+a}
_ —hoK Shy hoKZ,
or’  pz,+5Ve VG, Jrta} | erZi+5Ve NG Vota)
hoK Shy hoKZ,

S - o Fa . T 2
ep’ pzS\/Ech(b+\/p+a)+ 0p*S Vo VC, (b+ Vp+a) @

where

Z,

T sveve,

(23)
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Applying the Vanderpol and Bremmer technique

hoK _ Sho +
e(r-a)°  §oC,(p—a){Vp+b}

é(o’ t)eat = -

hoKZ;
+ = SR (4
oS \/z \/Cz (P—-a)s{\/P+b}

Taking the inverse transform we obtain

_ ho Lt 7, hKZ 1
' {JNCZ[JZ(a—bZ)’ \/;(a—bz)] QS\/E\/CTz[\/a_(a-bz)?’
~ t . £ ]+ \/;[ he 1,
Ja@-b"?  4va(@-b»*1 2221V eVC,Vr (a-b?)?

L hoKZ, 1 hKZ, ¢ ]+
oSV eVCyVr (a=b%* oSV eVCoVr (a—b?

N 3h,KZ,
80S \/ 0 \/C> a®*(a—b?)?

b ers -

(b2 —a)t

ho & hoKZ, ¢
B {JE VG ba-7 5 e G b(a—bz)-"} Erfib [+

L hob t L e<”"“>'} L hoKZb {e“”‘""
VeVvG l(a-b)  (@—b*)* " (@a-b7)] = eSe JC (a=b*)’
t? Lt 1 hoKt*
2(a—b*)  (a—b** (a-b?)’ 20

1 sk ho 1 hoKZ, 1
— e att [2 — 90 _ . + onsL — —
a JeJCr (a=b*)* " 0S\/o /Coy/n (a—b?)

hOKZI t {3 —at . 1 B
- — _d “'t/2+— at,t3/2 %
eS e JCo/n (a—bz)z} {2a2 ¢ a’
205 /e /Co y/m (a=b%)*
This gives the mechanical response emitted by a non-uniform transducer, where the

elastic compliances have damping characteristics. The response reduces to zero at ¢ = 0,
in accordance with the initial conditions of the problem. If we put C, = 0 in the equation

2%
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(20) the results obtained agree with those, obtained for constant elastic compliarices by
the present author in one of his papers. It is found that some additional time-dependent
terms appear due to the damping nature of the compliances.

I am grateful to Dr D. K. Sinha, for his kind and constant help in the preparation
of this note.
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