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A rigorous approach to the electron-electron and electron-core interaction has been
performed for the case of the radius of the free-electron potential box tending to zero.
Also an alternative approach, in which the free-electron model is from the beginning of one-
-dimensional character, has been developed. With a certain supplementary assumption made
in the second scheme, a full parallelism concerning the convergence-divergence problem
exists between the both approaches. Contrary to a previous non-rigorous treatment of the
electron-electron interaction by the author, all interaction integrals — except the pi-sigma
exchange integral — diverge in the present theory. But the differences of the interaction terms
which contribute to the energies of the electron excitations converge in many cases. The
electron-core matrix elements converge only when the Ruedenberg-Scherr conditions for the
free-electron model are fulfilled.

1. Electron-electron interaction R — 0

In a preceding paper [1] we recalculated the interaction integrals for a three-dimen-
sional free-electron model. Now the integrals undergo a limiting procedure of R — 0.
This gives, for the electron-electron interaction,

. , _ n L fc+a
lim AL{Covbexeh) — =1 [_c+a cos? (————2 L) +

R-0

+(cos cL+cos aL) ¢ si(cL) cos C;:ZZSI (aL) cos aL:l _
= =n [+ 0] [Si 6m)+8i (0] +[Y6-D] [SiG-Si@]} (O

where si(x) = Si(x)—n/2. The second equation in (1) is due to Eq. (6) of [1]. It holds
unless s and ¢ are of different parity. When this last case occurs, expression (1) is zero.
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The same happens when one subscript is zero and another is an odd integer. Expressions
(1) — with the accuracy to a constant multiplier — are equal to those of [2] and [3].
At the second step, we have (cf. [1])

. cos® aL
lim Azlt(Coul, exch) _ —I 1 it_ COSZ al+ a Si (aL)— E _
R-0 2a . a 2

= —(@n)"'Si(n), _ )

where Eq. (6) of [1] again has been taken into account. Eq. (2) also is the lim of expression

c—>a

(1). The behaviour of Egs (1) and (2) with respect to / and I is referred to in [1], Section
3 and Section 5.
On the other hand, .
lim Bi{;(Coul, exch) _ 0 (3)
R-0
for s # ¢, because the term BY;(©*>**® vanishes identically for any finite R owing to the
FE boundary conditions; the components of (3) are:
lim 0InR) =0 4
R-0
and zero times a constant. But in the case of s = #, Eq. (3) does not apply. The terms

lim Bf";(c"“"e“h)diverge, as it has been noted already in [1] and the Appendix of [3]. The
R-0
exception is the exchange term with / # I’. For example, when / = 0 and /' = 1, or vice

versa, we obtain — with the aid of Egs (2), (34d), (41) and (46) of [1]—"= convergent
result for any B-term at R — 0 and the corresponding n— o exchange integral equals 0.58
(e?/L). The function Jo(uer) entering Fo; in (46) of [1] has been approximated inside the
interval 0 < r < R by cos (nr/2R) and J;(u;r) by a function proportional to sin (nr/R);
the same has been done for variable r’ and the normalization coefficients have been changed

accordingly. A characteristic point is that lim B:,l(e“h) does not depend on ¢.
R-0

Also — in virtue of Section 2.3 and 3 of [1]— converges the difference

lim [ B:ft(Coul, exch) __ Bil, s(Coul, exch) =
R~-0

= —Inag+lnc = —Int+Ins. )

The result holds with the exception of the exchange case with / # I’ when expression (5)
is zero.

2. Electron-nucleus interaction at R — 0

With the series development of Eq. (54) in [1] and the normalization of Jy(ur), we

obtain
lim S% = lim S¢@) =
R-0 R-0

= (=Zzé*/L)[In a;+In (L—a)+2In 2+lim Y(u; R)] (6)
R—-0
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where lim Y(x;; R) contains a divergent component
R-0

lim In R; @)

R-0
in a similar manner diverges (cf. also [4])

lim §% = lim S =
R-0 R-0

= (—Zé*|L) {2 cos (ca;) (—Inc+In2—y)—
—sin (ca;) [g —Si (ca ,.)] +cos (ca,) Ci (ca,)—

—cos cL {sm [e(L—ap] [g —Si[e(L—a j)]] —cos [e(L—ay] Ci[e(L—a j)]}} +
+(—2Z¢*/L) [—1lim 2 cos (ca;)W(u;; R)], ®8)
R-0

where ¢ = pr/L, because the last term in (8) contains again a divergent component of (7).
W(u;; R) follows from the development of K in Eq. (56) of [1]. It represents the integral
R

Q7 [ rIn rJi(ur)dr | )
)

which has the lowest power of R. For example, for / = 0,
W(uo; R) = Q53 R? In R—  R*)+
+ terms with uj and higher powers of u. (10)

The dependence on R of terms named in the second row of (10) is similar to that of the
first row. Let us note that W(y;; R) does not depend on c.

3. Application to the electron excitation energies

3.1. Contribution due to the electron-electron interaction

Due to the behaviour of the B;, terms and that of Iéf’o (see [1]), all Coulomb and
exchange integrals for n and o orbitals — except the exchange integral for the n—a
interaction — diverge at R — 0. But, in many cases, we are interested rather in energy
differences than energies themselves. Then the one-dimensional FE model may be of

use. For example the difference

lim (J% —J% ) (11)

R-0 ‘
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is convergent in most cases. We can interpret (11) as the difference in the Coulomb energy
of an electron pair which occupy first the one-electron levels n and m and then the levels
n' and m'. Expression (11) diverges only when n = m or n’ = m'!. When both equalities
hold, Eq. (11) is still convergent due to Eqgs (2) and (5). A similar convergence exists for
the difference between two exchange integrals

lim (K~ Ko, 12)

though the physical meaning of the difference is less evident. Eq. (12) is convergent for any
n, m, n' and m’, remembering that for the exchange terms we have n # m and n’ # m'.
Explicit expressions for (11) and (12) are given in a subsequent paper (Part IV, Eqs (4)—(8)).

Let us now examine the contribution of the first-order electron interaction effects to
an one-electron excitation energy. Following e. g. [5], the energy difference between the
centre of gravity of excited singlet and triplet and the closed-shell (singlet) ground state is

AEee(l) b z (2Jn:‘:—K:§l)— Z (2Jn;£_Kn1i)—ann1+Kn2n1' (13)
1 13

The index n, denotes an excited one-electron level, the index n, — a ground-state level
left in the excitation; the summation runs over all levels of the closed-shell ground state.
We assume that only the z-component of the FE wavefunction changes during the excita-
tion i. e. ny and n, are different values for # in Eq. (1) of [6] (PartI). Due to Section 1, ex-
pression (13) diverges at R — 0. However, convergent results can be obtained for the two-
-electron excitation energies of a system, provided that the character of the electron distribu-
tion among the one-electron levels — an open-shell or a closed-shell — does not change
during the excitation. For example, the excitation energy of two electrons promoted
from level n,; to level n, is a convergent difference -

AEee(Z) = 2[2’ (2Jn2i - ani) i Z, (2Jn1i - Kmi)] + annz = Jn1n1 (14)

provided that L is not changed in the excitation. The symbol X’ denotes the sum with the
omitted i = n,.
We try-to circumvent the difficulty due to the divergence of (13) by putting

AE*® = 1 A=, (15)

The numerical results for (15) will be given in a subsequent paper. Let us note that the
ratio of the number of terms changed by insertion of (15) into (13) to the total number of
terms in (13), is a small quantity provided that large L (many electrons in a molecule)
are considered.

'An important drawback of the rigorous integrals for the electron-electron operator at
R - 0 is the divergence of many of the matrix elements entering the configurational inter-

1 We remember that the level with 7, or m, equal to zero does not exist in the FE model.
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action when / = I’ inside a configuration. For example, among the elements calculated
with the oversimplified scheme for butadiene [2], only one

[2224] = (eZ/L) lim (I4e—1Io.6—1I54+10.2) (16)

is convergent in the rigorous theory; / and /" refer to electrons in different configurations.
The examination of the matrix elements with / # I’ inside a configuration lies beyond the
scope of the present.

3.2. Contribution due to the electron-core interaction
The electron-core contribution to the excitation energy between the levels n, and n4 is

fim 3 [H3 ) 3 7] = — Jim 3 [55) —5/%7) a7
=0 J

R-0 j

where the summation runs over g point charges (nuclei) of the molecular core. Eq. (17)
can converge when the coefficient by W(u;; R):

Jj=4q Jj=4q
, . 2nn, 2nn, ’
(cos p'aj—cos p"a;) = cosTa —cosTa (18)
i=1 j

vanishes (¢f. Eq. (4)). In a similar way converges the nondiagonal electron-core matrix
element

lim ¥ HEe @) = — jim Y [S%@) — s8] (19)
R-0 j

R—0 j
na ,)] (20)

is zero. Eqs (18) and (20), when put equal to zero, can be transformed respectively into

provided that

Jj=q Jj=q
’ " m—n m+n
(cos c'aj—cos c''a;) = cos ma; | —cos
L L
i=1 =1

Jj=q Jj=aq

, (Thy 5 [(Tny
Z sin (_L_ a ) Z sin (~L— aj) 21)

and

. [mm . [mn
z sin (T a j) sin (f a j) = 0. (22)

Jj=

These relations are the normalization and the orthogonality condition for the Ruedenberg-
Scherr (RS) eigenvectors calculated in the case of a linear one-dimensional FE system [7];
in that case the coordinate a; of the jth nucleus is equal to jd and L is (g+1)d where d
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is the CC length. Therefore, the fundamental properties of the RS eigenvectors, constructed

from the values of the FE wave functions in the atomic positions, enable us to obtain the

convergence of most of the electron-core excitation energies and non-diagonal matrix

elements. Because these properties hold not only for linear but also branched systems,

we can expect the convergence of Y [Hyors@ — %] and Y Her*“) also in the case
' J J

when: (i) the indices n, , n,, m and n denote the branched FE eigenstates, (ii) the summation
runs over all sites of the branched core; and (iii) the RS boundary conditions for the
branched FE path are fulfilled.

4. An alternative approach to the one-dimensional FE model

The integrals of preceding sections are obtained from the calculation made first in
three dimensions and next when the radius R tends to zero. But the problem also can be
viewed from the beginning in one dimension. This means we assume that the interaction
between particles acts only in one direction, say that of variable z. In this case the inter-
action operator between an electron with coordinate at z and a nucleus which coordinate
in z-direction is a; is

(—Zé? , (23)

lz—a jl
whereas that between an electron at z and another at z’ is

eZ

(24)

lz—z'|

Then in place of lim I, (c¢f. Eq. (3) of [1]) we have [8]

c—>a

L L
T(R=0) i b ’ 1 ’
f bt I dz | dz - COS ¢z Cos az’ =
i lz—z'|
o o

, L
cos? [(c +a) E:I

c+a

cos? [(c —a) %]

=L [Si(eL)+Si(aL)]— [Si(eL)—

sin (c+a)L  sin (c— a)L]
+ X

1
—Si(al)1+ =
i )]+2[ cta c—a

x[—In c—In a+Ci (cL)+Ci (aL)—2 In (0)—2y] }, (25)
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whereas in place of lim Sﬁ(“’) we have
R0

1

lz—

L
Sl(,a”R=0) = (—Zé*|L) J cos czdz =
0 @

= (—Ze*|L) [—2 cos (ca;) Ci (0)+
+cos (ca;) {Ci(cap)+Ci[e(L—ay]}+
+sin (ca;) {Si (ca;)—Si [e(L—ay)]}]. (26)
Expression (25) has the undefined terms
000 @7

where zero is due to Eqs (6) of [1], whereas for ¢ = a the integral (25) diverges. Also
diverges the integral (26). But when we calculate: (i) the difference

IO -L57°, (28)

and (ii) the sum over the point charges of the core (with RS conditions for the core and
the FE boundary) of a difference
SI(’aJ;R=0) __S’r‘(;zj;R=0)’ (29)

we obtain instead of divergences the terms (27), in each case identical to those entering Eq.
(25). If we put a constant for any product (27), expressions (25), (28) and the sum of (29)
converge, in analogy to (1)-(3) and (5) on the one hand, and (17) and (19) on the other.
Let us note that apart from (—Ze?/L), the expression (29) is identical to that of Eq.
(31) of Roberts [9].

A difficulty in the model given above is that it does not distinguish between n—m,
o—o and m—o interactions. This can be circumvented by considering the interaction of
(23) and (24) averaged over the tranversal components of the three-dimensional FE orbit-
als. Then the integral (23) is multiplied by Fy.Dy of [1] and integrated over z, r', &
and ¥'. In effect, for Coulomb terms with any / and [’ expression (23) is multiplied by 1,
whereas the factor for the exchange terms is Kronecker’s d;.. This provides again the
term (27) for the n—o exchange integral, in correspondence with its convergence in the
model of Section 1.

5. Summary

In a rigorous approach to the one-dimensional FE model all electron-electron inter=
action integrals — except the m—o exchange integral — diverge. The divergence of the
Coulomb integrals can be assigned generally to

lim I§ . (30).
R-0
Eq. (30) gives the classic self-energy of the electron charge, so the identification of this.
energy with a convergent result, as it was done in the case of Part I and [10], is invalid..
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The divergence of the Coulomb terms has been stressed recently in [9]. Contrary to the

view expressed there, the divergence — though erroneously unnotified in Part I and [10] —

is referred to by the present author in [3] (¢f. the inferences below Eq. (A19) and Egq. (6)).
A similar situation exists for

hmli'.; (31)

which — owing to the divergence of lim B{{*"*) and the same property of the exchange
R-0

term for I = I’ — is divergent also for s # 0. This point seems to be overseen, and the
corresponding integral incorrectly referred to, in [9]. Due to the divergence of (31), the
exchange integrals as well as many of the matrix elements of the electron-electron confi-
gurational interaction diverge at R — 0. But the two-clectron excitation energies can
converge and then used in an approximation to one-electron excitation energies; see
Section 3.1.

The integrals for the electron-core interaction also diverge for R — 0. Contrary to the
view expressed in [9], the divergence is again referred to by the present author; see [41,
p. 109. But, when a core is composed of point charges distributed equidistantly along the
FE path with the condition at the boundary of [7], the electron-core excitation energies
can converge (Section 3.2); also converge the majority of the matrix elements of the
electron-core configurational interaction.

An approach to the electron-electron and electron-core interactions, in which the FE
model is from the beginning one-dimensional and which is alternative to that outlined
above, can be also developed. A full parallelism concerning the divergence-convergence
problem exists between the both approaches provided that we put a constant for any of
the expressions (27) in the second scheme. That is when the integrals and excitation energies
are convergent in one approach, the analogous integrals and energies converge also in the
second; a similar correspondence also holds for the case of the divergent terms.

The approach which is first three-dimensional and then assumes the radius R — 0
seems to be physically more plausible; also different kinds of the interaction (x1—=, n—o

and ¢—06) can be easier distinguished in that scheme.

APPENDIX

Non-rigorous approach to the electron-electron interaction at R — 0

':m

This scheme has been applied in all numerical calculations on the electron 1nteractlon
(r—= and o —0) made previously by the author. Basing on rigorous integrals, the scheme
can be postulated in the following way.

All integrals J" and K" can be expressed in terms of I} (see [1]). Hereafter we shall
omit the indices // because for R — 0 the terms I, are of equal value for any / (¢f. [1],
Section 3 and Section 1 of the present paper). Let us consider

i(c’ a) . Illlu(l) Ic,a = 11:]110 (Ac,a+Bc,a) (32)
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as a function of quantum parameters ¢ and a@; we put

u(c, a) = lim Ac,a (33)
. R-0
and
p(c, a) = lim B, ,. (34
R-0

The properties of (32)—(34) are summarized on Fig. 1. First, we observe that (32) con-
verges only in the points where ¢ and « are integer multiples of n/L and ¢ # a. These
points are indicated by the circles; in points indicated by the full circles (s and ¢ in Eq. (6)
of [1]are of equal parity) i(c, @) has the value given in Eq. (2), whereas on the open circles
(s and 7 are of different parity) i(c, @) is zero. In all other points of the (¢, a)-space expres-

_aA*
m ° o . [ ° o ] o x
8b o [ 3 ® (] o o X -]
B ° o ° o . o x [} °
6 ) ° o ° [} x o [} [}
. o .o [ 3 [ ° [} °
4h <] L] o x o [} ] ° o
b ° [} x o ‘e o L] o °
2 o x o ° o ° o ° o
b x o ° o [} [} [} o
T T2 6 e T
T

Fig. 1. Points of convergence of i(c, a) (Eq. (32))

sion (32) diverges. More intrinsically, on all circles and crosses we have convergent a(c, q)
and o(a, a), with the exception of «(0,0), whereas B converge on all circles, giving zero,
but diverge on all crosses. Unfortunately, the points on the diagonal are important, because
they enter twice to any exchange and at least once (the point (0,0)) to any Coulomb inte-
gral, causing the difficulties discussed in Section 3.
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But the situation on crosses can be viewed also in another way, viz. we can consider
the space composed only of points marked on Fig. 1 and corresponding to Eq. (6) of [1].
The space can be denoted by (&, @) and it is enough to take into account only a part of it,
with & > 0 and @ > 0. The space has its analogy in the solid state where it corresponds to
that of the lattice sites; sce e. g. [11]. In such a space B exhibits the behaviour similar to
that of the Dirac  function: it is everywhere zero except for the diagonal where it is
infinite. But a choice of another value of f§ on the diagonal also seems to be possible. Instead
of taking the rigorous f, let us consider it as a function of & and @ according to the usual
mathematical definition of a function. Then the limit of (¢, @) for & — a gives zero be-
cause the non-diagonal B represent a sequence of zeros. In effect, the divergent i(a, a),
when substituted by the limit of i(Z, @) for & — @, give the convergent i(, ) equal to a(a, a).

The treatment as above is unjustified except that it works. In fact, it enables us to
estimate rather accurately many of the physical data affected by the electron interaction in
the linear unsaturated systems [2]— [4], [12]; for example, correct good values for the
singlet-triplet separations have been obtained. From the point of view of the rigorous
scheme this accuracy should be considered as accidental.

Let us note that the sign of o chosen in [2]—[4] and [6] is that which makes the
exchange integrals positive. Contrary to the remark made at the end of the Appendix
in [3] and in footnote 2 of [4], this sign is definable by the calculations; it is given correctly
in Eq. (1). The sign given for S in [4] is that calculated for that integral.

An error in the 7—7 calculations was made still within the non-rigorous treatment.
For, the shrinkage of the transversal box dimensions to zero gives equal o(¢, @) and a(a, @)
for different /; see Section 3 and Section 5 of [1]. In effect, the factor of 3/2, which is
introduced when the o—o interaction is replaced by that of m—mn, should be unity.
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