Vol. A42 (1972) ACTA PHYSICA POLONICA No 5

QUANTUM THEORY OF A SPONTANEOUS MANY-PHOTON
RAMAN SCATTERING

By D. WELscH
Department of Theoretical Physics, Friedrich Schiller University, Jena*

( Received February 21, 1972; Revised paper received April 11, 1972)

By using the momentum-translation approximation the scattering intensity of a many-
-photon Raman process is quantum theoretically calculated. The result makes it possible
to investigate -the influence of the light source (for example laser light, thermal light, mixed
light) on the scattering intensity found.

- 1. Introduction

Reiss [1] has calculated atomic transition probabilities per unit time for a many-
-photon Raman process in a semiclassical manner and by using the momentum-transla-
tion approximation. Such a theory does not explain spontaneous processes, and investiga-
tions of the influence of the light source (for example laser light, thermal light, mixed
light) on the scattering intensity are very difficult. These difficulties do not occur in a con-
sistent quantum theory that we use here.

Section 2 of this paper is concerned with the application of a general quantum theo-
retical scattering theory formulated by Knéll [2] to a spontaneous many-photon Raman
process.

In Section 3 the high-intensity limit for a laser as a light: source, is calculated. The
influence of the light source on the scattering intensity is discussed in “first order

perturbation theory™.

2. The calculation of the scattering intensity

Knoll [2] has shown that the time derivative of the expectation value of an operator
Q within the framework of the scattering theory can be written as

%—Q = | dow l:gg Tr ()T (hw)d(hw—Hy)QT(hw)+
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+ 3 Tr 3 Led®), Q] (T* (hw)+ T(hw))—

2n

~ T [of@), 01, T (ho)iho- H@T(hw)] M

h
density operator p (before scattering occurs) the commutator of which with the unperturbed,
Hamiltonian H, vanishes. T(hw) is given by

T(how) = V +VG(hw)T(hw) @)

with V as the interaction Hamiltonian and with the definition G(hw) = (hw— Hy-+ie)™,
e — +0. /

The special case of scattering of electromagnetic radiation by a bound electron (atomic
system) leads to

1
where we have used [Q, Hy] = 0, and g,(w) = 5((0— —H0> Q4 - 04 is that part of the

H=H,+V = Hi+H{+V,.

v e*Zt iy 3)
B N 2me* "

HE and H{ are the unperturbed Hamiltonians of the bound electron and the electromagnetic
radiation field (Coulomb gauge), the vector potential A(x) is defined by [2]

A(x) = Z {Ak).(x)akl'l'Akﬂ.(x)akl} 4
2
A = ({—{) e | )

From the Appendix 1, the T-operator of Eq. (2) which is evaluated by using the machinery
of scattering theory is

T(hw) = Ve* (1+R(hw)W) (6)

where we have used the relations
R(ha)) = (ho—H'+ig)"!, &- +0, @)
"= e SHS = Ho+ W, 8)

Ax = E Sp =1 E Sk).{e’kxak}.','e ikxa;c;a}- €]

In the following the dipol approximation will be used. This approximation leads to [3]
W ~ —exE (10)
with E as the operator of the electric field strength.
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Now, the frequencies of the photons involved in the scattering process are assumed
to be very small compared to the energy differences of the bound electron (atomic system).
By using the results of Reiss [1] the second term on the right of Eq. (6) can be neglected.
We get

T(ho) =~ Vé°. 11

The use of such a T-operator (momentum-translation approximation) is equivalent to
the many-photon condition [1].

With the T-operator from Eq. (11) we shall treat the spontaneous high-photon Raman
transition (see Fig. 1) between the (neighbouring) atomic levels E,, E, (H¢|a) = E,|a),
Hgby = E,|b), E, —E, = E,, >0). The conservation condition will emerge as

l ha)1
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Fig. 1. Schematic of the spontaneous many-photon Raman process

nhwo—hw; —E,, = 0 (wy, w; — frequencies of the incident and of the scattered wave). To

the above effect we identify the operator Q in Eq. (1) with the occupation number operator
Ni = dafa; of the scattered light with the assumption N0 = oN; = 0 (spontaneous
process). The trace (occupation number representation) in Eq. (1) then leads under con-
sideration of the commutator relation

a,ve® = [e%(a, +i§1e—i’?%, H{] 12)

(ﬁ — position vector of the atom) and by replacing ¢’ in the sense of a development by
€% (0 — index of the incident wave) to

d _ 2n
— Ny = h E Qr?t+n]m+n Eg, 6(nhoo—ho, — Ey,) x

xalS;<m+nle”|my|bY (b|S;{mle%|m+ndlad. (13)

From the Appendix 2, the matrix element {(i|e’°|n> to be calculated is

1

102G —ikR\m—vy: & il;;?n-—
(m|e¥|n)y = § o383 (m!nD(iSoe™ )" (iSoe™ ) "

v!(mfv)!(n—v)!

v=0
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(! = min (m, n)). Thus we get

ZROPPP-E
Z (m=)i(m—pt o

‘m=0 v=0 pu=0

X Tyop Tiba S(nho —hw, —Ey,) (15)
with the abbreviation
) ( )vS2v+n
T = <al8,e 3% ——
nab <a[ 1€ V'(V-I- )' I >] ab] (16)

From the Appendix 3, the m-summation in Eq. (15) which is carried out leads to the
convenient equation

d AT 2n +\ns  +\V \TP n
PRl Ty Z Z (a9)(a0)"(a0)"(aq )(a0)(ao)"> x
v=0 u=0
X n‘;an‘;m 5(nhw0 —hwl —Eba) (17)

where ¢{...) means the trace with the density operator o° (density operator of the incident

light).

3. Discussion

Eq. (17) is the quantum theoretical generalization of the semiclassical result of Reiss
[1]. It clearly shows the influence of the light source on the scattering intensity because
the expectation value of the product of the field operators that occurs in Eq. (17) depends
on the density operator of the incident wave.

The light source is assumed to be a laser of high intensity. In this case the density
operator @° in the P-representation is given by [4]

o_ 1 d20 8(la|— VN, Ny > 1 18
Q ) 27'C »\/ﬁ o (|°C1 0) I(Z> <OC‘, . 0 > ( )
0

(aola) = alad, Ny = {aga,> is the mean number of the incident laser photons). By
using this density operator the calculation of the expectation value of the products of
the field operators in Eq. (17) leads to

(ao )"(ao )v(ao)v(ao Y(ao)(ao)"> ~ Ng Ng*tvTe, (19)

Then the v- and p-summations in Eq. (17) can be carried out. We get

d — 2
—N,==—

= N1 = S Bl Kal$,e73% 1,080 VNo)IbI* x

X 5(nha)0 —hwl . Eba) (20)
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(J,(28, J Fo) — Bessel function). The same result also follows with the density operator
0° = |NoY {Nol (a3 @o|NoY = No|No») with No > n.
In the sense of a generalized perturbation theory we neglect in Eq. (17) terms with

i # 0, v+# 0. This means

d — 2n +\n, n 02

at N, = R (a0)"(a0)"| Tyapl “(ntreog —hoo; — Eyp). (21)
If the incident light is laser-like light with the density operator from Eq. (18) then Eq. (21)
leads to the result

d — 2 .
ar Ny = " (NOL)nln?zblzé(nhwo —ha, —Ey,) (22)
(No;, — mean number of the incident laser photons). Another case we are interested in
is the scattering with thermal light, the density operator of which is [4]

o L (e "”atl > <al 23
= — [4 .
0 “Nox o Nor |a) o (23)
From Eq. (21) we get
' d — 2r
EN1 = ? n!(NOT)”Ingblza(nhwo—hwl_Eba) 24

(Nor—mean photon number of the incident thermal light). By using a laser and a thermal
light source of the same intensity we therefore find for the second case a scattering intensity
greater by the factor »!.. This means that in the case of a thermal light source we need
a smaller intensity of the incident wave then that by using a laser if we wish to obtain
the same scattering intensity. The density operator 0° = |N,> (No| leads to the smallest
scattering intensity:

d — 2 N
—N, = o (_NO > | TS 28(nhwy —hw, — Ey,). (25)
No—n

It is clear that the number of incident photons N, must be equal at least #. In the limit

J_V'o > n we get n! (]_VNO n) ~ Ng. Eq. (25) and Eq. (22) will be identical.
— .
The influence of quantum statistical properties of light from various sources on

non-linear optical processes of low order perturbation theory (one-photon Raman scatter-
ing, two-photon absorption efc.) was investigated theoretically by Shen [6] (calculation
of stationary resolutions of the density matrix equation within the framework of the
ordinary time-dependent perturbation theory). For example, the average Stokes generation
(one-photon vibrational Raman process) was found to be much more effective by chaotic
pumps than by coherent pumps. It can be said that our results for the spontaneous many-
-photon Raman scattering considered in this paper are a (nonperturbative) generalization
(with respect to many-photon processes) of the results derived by Shen [6] on other way.
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APPENDIX 1

The Fourier component of the state vector after the scattering process is shown in
[2] to be given by

[P(@)) = P Ow))+Gho)V () =
= |PO(0)> + G(ho) T(hw)| PO (w)) (A1)

where |¥®(w)) is the Fourier component of the state vector before scattering occurs.
We consider the unitary transformation described in Eq. (8). The transformed state vector
|¥P'(w)> is found to be

#'(@)> = e™°|¥(@)). A2)

This transformed state vector can be calculated again within the framework of the scatter-
ing theory [2]:

1P (@) = |PO())+R(A)W | P (). (A3)

The definitions of R(hw) and W are given in Eq. (7) and in Eq. (8). Combining Eq. (A.3)
with Eq. (A.2) and Eq. (A.1) we readily find the T-operator given by Eq. (6).

APPENDIX 2

To prove Eq. (14) we write ¢ as a normal product of the field operators of the incident
wave. In the P-representation and by developing exponential functions we get

e 1 .
Sl Z z Z e szﬂ d?y e 1PPem I

v=0 u=0 =0

. (@80e™ Y @Soe™ Y B BY Y A4
(m!nD¥viplz! ’ '

By using the relation [4]
1 *
m jdzoc (x )m(“)ne—lulz = 1!y (A.S)
T

we find Eq. (14).

APPENDIX 3
For the proof of Eq. (17) we write down the matrix element o) injmn i0 the P-representa-
tion (@ola) = ajod):

|a|2(m+n)

—laj? P2
mrm! © g

Q?n+nlm.+n = J‘dza P(OC)
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By rearranging the series of Eq. (15) and under consideration of Eq. (A.6) we get

!
T J T P Z Z Z(m "S'v?fn e

v=0 pu=0  m=v

X A’uv{’I;t‘:zb n‘;)a'l' T;A‘:zb n‘;a}a(nhwo _hwl _Eba) (A'7)
with the definition

1 for v #
/1,,v={ H

1 for v =p. (A.8)

The well known identity

n .
v m-—v m
2 06D-G) @9
j=0
leads to the relation

é
0

m!lal2(m+n) o2
—————————————— e_ a —
Z (m—v)\(m —p)!

n
ulv! b ndy— i
= — | 2tety=d), A.10
Z,J!m-—])!(v—m (4.10)

Therefore the a-integration in Eq. (A.7) if it is transformed identically gives

2 V1| 2(m+n)
d*aP(x) il el =
(m—v)I(m—p)!
73

— Z uly! +)n( +)V( +)u—j v—j u.n
= D i @y iy

n

= ll'V' ne  t\pe o ENV—F u—j v _n
=Z i1 <@ Y @o) ™ as asas) @1

where <...) is the trace with g°. From the normal-ordering theorem [5]

n

!
sy = Z G Y
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. B

aial) = Z BV gy (A12)
LGt

j=0

the combination of Eq. (A.11) with Eq. (A.7) leads to the Eq. (17).
The author is grateful to Professor G. Weber, Dr L. Knéll, and Mr T. Hager
for helpful discussions.
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