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The Green functions method is used for calculating the magnetic susceptibility of
a ferromagnet with single-ion anisotropy of the type — ¢ Z (S;)2.
f

1. Introduction

In this paper the Green function technique is used for calculating the magnetic sus-
ceptibility of a magnetic crystal which is described by the Hamiltonian

H= —h ; 85— %fZngSf : Sg—f'; (897 ®
g .

where h=ugs (u being the Bohr magneton, g the gyromagnetic factor and 5 the mag-
netic field strength), J, is the exchange integral and 4" is the single-ion anisotropy
constant. ) .

" Application of the Green function method in this case encounters difficulties. Be-
cause of the anisotropy term a Green function of the type ({(S*S*+S*S?|B)) appears.
The ordinary decoupling procedure [1] cannot be applied. Lines [2] has given a decoupling
scheme for this function. His paper discusses the sensitivity of the Curie temperature
to -crystal field anisotropy and his approach is valid for arbitrary spin.

Recently, Potapkov [3] considered the thermodynamic properties of the same ferro-
magnet for spin S = 1. His method is based solely on spin algebra and yields a closed
set of equations for the Green functions. The most general method based on spin algebra,
valid fqbr arbitrary spin, has been developed by Devlin [4]. Potapkov and-Devlin use
the usual decoupling procedure [l];ehence, their methods are equivalent to the RPA-
-approximation. The papers [2, 3, 4] do not contain calculations of the magnetic sus-
ceptibility y.

* Address: Instytut Fizyki, Uniwersytet Slaski, Katowice, Uniwersytecka 4, Poland.
(413)



414

Tyablikov [1] has presented a technique of findig y for an isotropic ferromagnet.
His calculations do not take into account the part of the demagnetlzatlon energy which
is due to the spin opefators.in the same lattice sites.

In this paper we find y by the method described in [1], and take into account the
terms which Tyablikov had omitted. The decoupling procedure of Lines is used for arbi-
trary spin and the method of Potapkov-Devlin for spin S = 1. In Section 2 we present,
using the Lines decouphng procedure the calculations of the magnetization ¢ and {(S%)?).
In Section 3 we recall some ‘results obtained by Potapkov and Devlin, and in Section 4
we calculate the magnetic susceptibility in both cases.

2. The method of Lines

In order to calculate the méghétizatioh g, {(S%)*> and y we have to know the Green
function (¢f. [1]):

G(t) = LSm®IBL0)>>7 = O(t) <[5 (1), BLO)], ¥))
where
B,0) = (S2)¥S;, k' =0,1,...,25—1.

The equation of motion is
d : - y
i. 2} Gmn(t) o ia(t) <[Sn-ta Bn]> + thn(t) + aJ (O)Gmn(t) e
-c }; J 1mG () — H (LSeD)S 1 (1) + S5 (S2D|BL(0). 3

The simplest decoupling scheme [1] is used to obtain Eq. (3). According to Lines [2]
we can write

LSeDSm(B)+Sm(DSiDIBLO)Y> = B(B,)Gp(1), @

where @(B,) is a constant which can be easily calculated by putting ¢ = 0. This decoupling
is valid for arbitrary spin. Takmg the Fourier time and space transformations we obtain

i[S*, B])

i : — =. (%)
—h—0(J(0)— J(k)) = A B(B)+i6

Ggm) =

In the same way as in [1] we may calculate the magnetlzatlon o and <(S%)%). For spin
S =1 we have

1+42P,®
i i PG (62)
1+ Py+2P; +3P,P,
- 14+2P,+2P,P
() = T e (6b)

14Py+2P,+3P,P,’
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where
S kil bidts Wl i Yo
“ N £ exp{l/kT[h+0(J(0)—J(K)+ # &, T} — 1
N LA ;
and :
(3¢sHH-2 a4 - '
i(Lw_'=_, fork':O,
&, = O(B) = a f

-1 ,  for k' =1.

The nonlinear set of equations (6a) and (6b) is valid fo'r'arbitrary"fempéi‘at,ureand"in
principle is solvable. .

As a special case we can consider ¢ -and {(S%)*>) at T = 0. We obtain then, including
the terms proportional to T2, the following formula

. v (TN T4 .71
o ={(§)*) =1~ [(3—)02]_%(5?(09 Zy [ﬁ (h—AH di(S'"))]'; PO (1))
where
(-)2 — ZfzJ(f)

TORE v = T Ze)=— n;1 n"Pe™™

A
Assuming 70) <1 we can calculate from (6a) and (6b) the Curie temperature

KT, =i(°)—§f,, ®

where C is a constant.

3. The method of Potapkov and Devlin

The method of Devlin [4]-is general and is valid for arbitrary spin S. The number
of equations which are to be solved is 2S. For S = 1 Devlin’s method is equivalent to
that of Potapkov [3]. We recall some results presented in [3]. In the low temperature
region (including the terms proportional to 7/%) an identical result (7) is obtained for o
and {(5%)*). For the Curie temperature (using similar approximations) one yields

2J00) X

P B e S 9
c=73c tic ©)

Hence, in the low temperature region both methods (Lines ‘and Potapkov-Devlin)
are in good agreement. At higher temperatures, however, the agreement is not so good.
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4. Calculations of the magnetic susceptibility

a) In our opinion, calculation of the magnetic susceptibility yx accordmg to the decou-
pling approximation of Lines should prove useful.

Consider a spheroidal ferromagnetic sample. The Hamiltonian including the de-
magnetization energy is

H = S(S+1)NB—(h—B) sz;—_ %Z(Jf_,,—zc)s;s;—
(Jfg—zB)s, - _(#+B—C) Z(sf) , (10)

where N is the number of spins,

2 2 '
Il s
B="-M, €=1-M,,
on M 2N -,2 | (11)

M,, M, are the demagnetization factors. The sample is placed into a magnetic field
alternating with frequency Q. The y-tensor can be calculated from the expression (cf.

npt
Xop(2) = in?(<SSP Y, (12)
where

op=12 S=Y5
f
Xa3 = X3z = 0, for a = 1,2,

X33 = Xst. -

To get (12) we need the Green functions LSHIS-DOD and ((S—ISHHHY. These functions
can be easily obtained by (5) interchanging

h - h—B, J(k) - J(k)—2BNo(k),
J(©0) - J(0)—2CN, A - A +B-C. (13)
Thus
KSTISTHIHE = NGo(Q) (14)
and according to (5) and (13)
2io

Go(Q) =
o) Q—Q,+id’

(15)

1 The factor 27 in (12) is omitted because it is dealt with by the definition of the Fourier time trans-
formation.
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where
Qo = h—B+(A+B-C)P(S7)+2No(B—-C), (16)

3(SH*>—S(S+1)

[

®(S7) = a7

In a similar way we find

(STISTHY = —N —22 (18)
S Q+Qy+i6
The y-tensor (12) can be expressed in the form
Xap(R) = 2Xap(Q) +ixap(€2), 19)
where
W@ = @ = N p () p !
¥11(€2) = x22(Q) = 5 i Q"'Qo Q—Qo) s
, R u’Nno
x21(Q) = —X'12(Q) = D) [5(9"‘90)"‘5(9_90)]»
rn n B MZNTEO- .
X11(Q) = 122(2) = 2 [6(Q—Q0)—(2+ Q)]
2
1@ = @ =" p (L )+P 2 (20)
X21 = —X12(8¢). = 5 Q'l‘Qo - o-a, .-

The formulae (20) are valid for arbitrary spin. Unknown ¢ and {($%)*) for S =1 are
obtainable from (6a). and (6b) with (13) taken into account.

b) To obtain the formulae for the Green functions in Devlin’s method we must solve
the set of 28 equations. Unfortunately, to get a general solution is quite impossible. There-
fore, we restrict ourselves to the case S = 1, following Potapkov [3]. Using the Green
functions given in [3] and taking into.account (13) and (14) we get

iL, . iL,
Q—=Q, +id i Q-Q_+is™

L (STISTHE = 1)

where
- ‘zNE [2( + B~ C)i—*(J(0)~ 2BN) +20f],
L= % [—2( +B—C)A+0*(J(0)~2BN) +20p),

B = (4 +B—C) (# +B—C—IJ(0)—2BN))+ L 62(J(0)—2BN)?]">,
Q, = h—B+ £ 6J(0)+No(B—2C)+p. (22)
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- Similarly, we find

S Sl iL, .

- — — — . (23)
Q+Q,+i6 Q+Q_+id

Using (12), (21) and (23), (19) we obtain the y-tensor:

== B (e p ()]s
A11 22 4 1 o+e, o-0,
+L,| P L —P ! .
Q+Q_. Q—-Q_
n2u?

Ko = =212 =~ Li[0(Q+2)+6(Q-2)]+ L,[6(Q+2-)+6@ - 2]},

K(STISTI =

712;12
- (L[0(2=2.)— 5@+ 2.)]+ Li[5(@-2.)-5@-+2.)]}

. Y H 1
K21 = —X12 = I{ 1v|: (Q+.Q+) * (;2—[2+>j| i
YR Py 24
b2 (g )+ (eI @

The unknown ¢ and {(S%)?2) are given in [3], but for our purposes we must use the substitu-
tion (13). By putting # = 0 in (20) or (24) we find the y-tensor for the isotropic ferro-
magnet. X
Unlike the formulae in [1], the formulae (20) and (24) contain the terms of demagnet-
ization energy due to the spin operators in the same lattice sites.

We would like to thank Docent dr A. Pawlikowski for his helpful remarks and reading
the manuscript.

" oo
X11 = X22 =
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