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The formulae for the electron-electron and the electron-core interaction have been thorou-
ghly studied for the three-dimensional free-electron model of linear systems, and the errors of
an earlier approach have been removed. For the electron-electron integrals all kinds of the
interaction, sigma-sigma, pi-pi and pi-sigma, have been examined. The formulae useful for
the forthcoming treatment of the interaction problem in the free-electron model with the radius
of the potential box tending to zero have been outlined.

1. Introduction

In [1], henceforth denoted as Part I, we presented-a scheme by which a system of
n and o electrons can be quantized in a linear unsaturated molecule. The molecule is
represented by a cylindrical potential box extended along the path of the CC-bonds.
We assume the box corresponds to a straightened chain of the linear molecule, 7. e. the
angles between the bonds are all equal 180°. Both = and ¢ have a free-electron character,
hence, the one-electron wave functions are those of Eq. (1) of Part I and the correspond-
ing energies are given in Eq. (2) of Part I. The number ¢ equals 1 in all cases and may be
omitted.

The total wave function of the system is an antisymmetrized product of the one-
-electron wave functions. The fundamental electron-electron interaction integrals are the
Coulomb and the exchange ones. The Coulomb integral is given explicitly in Eq. (5)
of Part I, where the denominator of the integrand, denoting the distance between two
electrons, should be written correctly as |[r—r'|.

In Part I we omitted some terms which, though they vanish for the case of different
quantum parameters, cannot bz rejected when these parameters are equal. Also minor
errors have been made, so the general purpose of this,-and the forthcoming paper (Part 11I),
is to reconsider the electron-electron interaction in the FE model correctly and more
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fully than before. In particular, we shall: (/) remove the defects of Part I and Ref. [2],
(if) clarify the problem of convergence raised recently in [3] for the interaction integrals in
the case when R, the radius of the potential box, tends to zero, and (7ii) examine — for
the same case as in (/i) — the nature of simplifications made in our former calculations on
the electron-electron interaction. The effect of the corrected scheme on the electron excita-
tion energies of ethylene, butadiene, and long polyene and polymethine chains will be also
considered. In the present paper we calculate thoroughly the integrals for the three-dimen-
sional free-electron model.

2. Electron-electron interaction integrals

2.1. Basic formulae
In general, the FE Coulomb and exchange integrals are’

2

J:tlm = L (Ig 0 +12n 2m IO 2n~ 0 2m)Cou1 (-l)

and
w w w exch
Knm = L (In+m n+m In—m,n—m'°21n+m,n—m) (2)

where e is the electron charge, L the length of the potential box, and /and I’ have the same
meaning as in Part I.
The general form of I is:

Ill’(Coul,exch) — Ill’(Coul,exch)__
S,t = fc,a .

8 C 4 .
! J drfdr' £32 icz B OZ B, YD (S, &) 3)
r—r|
where
J ) (uyr’)
Fy(r,r") = le ﬁJ () (upr') or 4

Jyp(uypr)y(uyr’)

cos 19 cos I'Y .
Dy (8,9) = T?T} cos 19 cos 'Y’ or . Q)
cos '3 cos 1Y

Symbols ¢ and a are the transforms of the integer quantum parameters s and ¢:

¢c=srLl, a=tnl1 6)
and
dv = rdrddz, di' = v'dr'd¥dz @)

° 0<z2<L, 0<rnr¥<R, 0<9 9 <2xn (72)
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The upper expressions in (4) and (5) are valid for the Coulomb integral, the lower for
the exchange integral; ;R and u; R are the constants equal to the arguments for which the
Bessel functions J of orders / and I’ attain the first zeros. For the ¢ electrons / and /' is
zero, whereas for the n electrons these indices are unity. Symbols Q and T denote the
normalization coefficients; we have [4]

Qo =2724-R1, Q,=3514-R1 ®)
and
Th=0Qn) Y T,=zt )]

Let us note that (3) does not change when the sequence of s and ¢ and/or that of / and /'
are interchanged. For / = /" we have

Iil’gcoul) - Iggexch). (33)

The same concerns the components of I in the subsequent section.
The mixing of configurations for the operator of the electron-electron interaction
provides the integrals which can be calculated in a way similar to that applied for J and K.

2.2. Integral for s+# ¢
We substitute in Eq. (3)

(r=r)7t = 20' & cos [m(3— 9] E dicJ (ki) o (kr')e ™ 7%, (10)

where ¢, = 1 and ¢,, = 2 for m = 1, 2, 3 ..., etc.; see [5]. In the case of the ¢ — o inter-
action (/ = I’ = 0) the effect of (10) is equivalent to that of the Green function of Eq. (12),
Part I, multiplied by the factor 8n. The sequence of the integration over k can be inter-
changed with that over z and z’. This is permissible because the uniform convergence
of (10) with respect to the variables z and z’ exists in the whole interval 0 < z, z’ < L.

In fact, (i) the integral | dk J,(kr) J,(kr") is convergent for any integer m > 0; (i) the
0

function f(k, z, z') = exp (—k|z—Z'|) is a non-increasing function of k for any z and z’
in the interval 0 < z, z’ < L; (i) for k = 0 the function f(k, z, z') is smaller than a constant
C(> 1) which is independent of z and z’. Hence, the conditions of the Abel criterion for
the uniform convergence of the integral (10) are fulfilled (see [6], Appendix II). By perfo-
rming in (3) the integration over z and z' we obtain

W (Coul,exch) __ 1l’(Coul,exch) 1I’(Coul,exch) 7
Is,t _— As,t + Bs,t - (1 1)
where

2n R 2n

"R
AgLcosbe) = L7 pdr [ d9 [ #'dr’ [ d9'Fpu(r, ¥)Dy (9, ) x
0 0 0 0

X "20 &, COS [m(s_g')] :f T, (k). (kr')dk X
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’ k? L L
X {(62 I l:cos2 (c+a) i cos® (c—a) E:l +

+ as cos? (c+ )L 2( L
@11 @+ 5 » a 5 —cos c—a)z -

e B AR ol o T
—€X = COS ¢ cos a _
P cc—a® A+k*  *—a® a’+k2 i (12

and

, R 2z R 2rn
B D — L[ pdr [ d9 [ vdr | dYFyu(r, ¥)Dy(8, 9) x
0 0 0 0

X "20 &y cos [m(3—9")] z J (k)T (k" )dk x

B 1 sin(c+a)L+sin(c—a)L 1 s 1
2 c+a  c—a 4k a’+k?

e—Lk

T (PHED) (@ KD

(¢ sin cL+a sin aL)} k. ' (13)

In both terms the integration over k can be performed, getting convergent results. Let
us start with the term 4. The contents of the second square brackets in (12) is (—1) sin
cL sin aL, thus — due to (6) — it vanishes for any ¢ and a also in the case of ¢ = a; for
the case of ¢ = @ = 0 see Section 2.4. The remaining terms in (12) can be integrated
with the aid of the formula [5]

Jo(kw) = i & €08 [M(9 — )T (ki) J (k1) (14)

where
@ = [r24r'2=2rr" cos (3—9)]'"2 5)
If (14) is substituted in (12), the non-vanishing terms in (12) give the integrals of the type

<o}

To(k) ) !
J dkzg(:% - 5”3 [1o(b®)—Lo(b&)] (16)

0

(see [6]) and

v —Lk ~
k
Jdk 5_ 2-]0( 260) _
b*+k
(o]

_ { smbbL Ci (bL)+ cosbbL [g _Si(b L{I} I1o(bé) +M(b&), a7
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where

B T (% bd'))m+2v .

1,(b®) = i 5 18

n(b®) yIF(m+v+1 (18)
0

=
is the Bessel- function of the second kind;

0

. (bd)) B Z (%;bd))m+2v+1 (19)
N T(v+3/2)[(m+v+3/2)

v=0

is the Struve function of the second kind [6], and

m=o00 Rn=®0

~y 71 m[Z(m—l)]’(?_cT) w -2
M(béy = b Z Z(—D e 2) (n))~2. (20)

m=1 n=m
The term-by-term integration performed in (17) was permissible in view of the uniform
convergence of the integrated series. Equations (12)-(17) give '

R 2r - R 2n

AlfContbexet) — 17U ydr [ d9 [ v'dr | dS'Fy(r, ¥)Dy(9, ) x
0 o 0 o

i L ,.. L7 = 1 3 X
x <| cos (c+a)—2— +cos (c—a)z ?_—a—zi[clo(cw)-—alo(aw)—

—cLo(c®) +aLo(ad®)] —

2

¢ coscL|m )
—(cos cL+cos alL) [ 3 {—c— [E —Si (cL)] I 0(ccT))+M(ccT))} —

62—(1

2
et {COS ok [g _si (aL)] Io(a®)+M(a®)}]}. 1)

4 —(12 a

Owing to (6), the integral BY “°""***™ yanishes for s # 7; hence,

1I’(Coul,exch) ___ 1’(Coul,exch)
Lo 0 = Ay . (22)

With the aid of Eqs (18)—(20) the integration in (21) can be completed. For even powers
of @& the integration over r, 1, 3 and & is straightforward. In the case of odd powers,
we can substitute

o)

~2n+2 “\™
et =L g2 Z P,,[cos (8—9"] (;) 23

m=0
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for r" <r; P, is the Legendre polynomial of order m. In Part I, Eq. (24), and in 2],
Eq. (A15), the odd powers of @ have been expressed in terms of the Gegenbauer coefficients
C,.- This was erroneous because C, are undefined quantities for v = —1/2.1

2.3. Integral for s =¢t#0
In this case the integral is that of (3) with ¢ = a. We have again
Itl’lt’(Cnul,exch) = Aif;(Coul,exch)+B£f;(Coul,exch) (lla)

where
R 2n R

2n
A (Coubexeh) -1 [ rdr | 49 frar il Ay Fy(r, ¥)Dy(9, 9') x
o] 0 0 1]
0

X fJo(k@) (14cos® aL—2 cos aLe™*F)

0

2

e (24)

The integrand in (24) is that of 4% {“""***™ when lim is calculated and Eq. (14) is taken

c—a

into account. The second term inside the braces of (12) has been neglected because by
virtue of Eq. (6) cos? aL—1 is zero.
The integral (24) can be calculated either directly, or as the lim of the expression (21).

c-a .
In the first case the integration can be performed with the aid of Section 13.6 of [6].
The last term in the integrand of (24) can be transformed into e~ (a?+ k2)~1 — a%e (42 +
+k?)~2; then the integral of the first component is that of Eq. (17) and the integral of the
second component can be obtained from the first one by differentation with respect to
parameter a. We follow the second way, taking into account that the integrand in (12)
is a continuous function of k, ¢ and a for any real ¢ and a except when ¢ = a = 0 (the
singularity in the last term of the integrand in (12) is spurious). We have

: _ 1
lim [elo(c®)— aly(ad®)—cLo(c@) +aLo(ad)] e

c—a

o (25

X=wa

1 d
= 5 7= [¥o() = xLo()]

1 v
lim —- {c cos cL [Si (cL)— g:' Io(cdd)+ c*M(cd) —
a

coa € —

—acos aL [Si (aL)— g] I (ad)— azM(a(b)} =

+

x=a

- % I (ad) —;; {x §os xL [Si (xL)— g]}

1 I am indebted to Dr P. J. Roberts for drawing my attention to this point.
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1 . n|d .
+ 3 cos qL [Sl (aL)— 5] e Lo(@x)] x=a+
- ' [x*M(@x)] (26)
2a Zl_ 4 =y
Taking into account that i
d :
— [yIo)] = yL.(»)+1o(») @7
and
(28)

d - 1 3\
I [YLo(] = yL,(»)+ [F <§>F <5>] y+Lo(y),

where y is a variable, we obtain
, 2n R 2
Y j rdr j ds j rdr’ j dS'Fy(r, ¥)Dy(9, §') x
1
{(cos aL+1) a I:I o(@a)+ adl (ad)—Ly(ad)—adL,(ad)—adl'~ (2> / (i):l +

+2 cos aL {cos L [Si (aL)— -’23] [1o(ad®) + acsI (ads)] —

AM
— M(ad)— g e d(;’“’)}} (29)

where the terms which vanish owing to Eq. (6) have been omitted. The integration over

r, ', 9 and 9 can be completed when Eq. (23) is used
The contribution of the B,, terms does not vanish and its calculation seems to be

easier without the aid of (14); we have

0 2n 2z
B:,I;(Coul,exch) — zo sm j‘ d9 g d9/ cos [in(S—SI)JBZ,(m)(CO“l exch) %
m= 0
x Dy(8, 9), (30)

where
r'dr'Fy(r, ') f (k) W(kT') —5——; -y

ot——j,u

R
B:f;(m)(Coul,exch) = j
0

v dr' F(r, )L (ar)K, (ar") 31

O‘—ﬁz

R
= ] rar
0
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which holds for 7" > r; for 1’ > r a reversed sequence of the arguments should occur [61;

,,,-1( 1)"(m —v—1)!
m( ) = = ‘ V'(%Z)m Nm—2v
et O G 1 1
HE i I G D= v+ D= dpm 4], (32)
v=0

1
where p(q) is 1+%+%+...+;—y (y is Euler’s constant), and I, is given in Eq. (18)

with ar (or ar’) instead of b®. Equations (32) and (18) allow term-by-term integration
in (31).
Owing to the equation

2n 2n

6f a3 oj a9 cos [m(9—9')] cos nd cos 'y’ = 0, (33)

which holds unless m = n = n’, the sum (30) may be reduced to only a few terms. We
obtain

BOO(Coul sexch) __ BOO(O)(Coul exch) (343)

Bl 1(Coul,exch) __ Bl 1(0)(Coul, exch)+ Bll(Z)(Coul exch) (34b)
for the 0—o and n—= interactions, respectively, and
B° 1(Coul) __ BOl(O)(Coul) (34c)
BOl(exch) BOl(l)(exch) (34d)
for the #—o interaction.

2.2. Integrals for s =¢t=0

Here we do not obtain separate convergent results when the limits of (24) and (32
are calculated for ¢ — 0. For example;

2n R
AG D = Tim AX(Coul = Zj rdi j d-9j j d9’ x
a-0
X Fy(r, ¥)Dy(9, §)L 71 j k™2[1—exp (= Lk)]Jo(k&d)dk (35)

is a divergent term for any finite positive R. This is evident when the integral j dk in (35
is divided into

fak+ | dk; (36)
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where g is a finite positive number, and the term under the first integral sign is expanded
into a series of powers of k@. There is a similar divergence in the case of By ¢ °*". But the

total interaction integral
1'(Coul) __ ' (Coul) W (Coul) __
Ioo ™" = Ao +Boyo =

r 1
= L1 Jd‘fJ dr’ m Fy(r, v )Dy(8, 9) =

R 2n ©

R 2n
=L ' [rdr [ dS] r'dr' [ d'Fu(r, ")Dy(S, ) [ Jo(kdd)dk x
0 0 0 0 0

5 L . e M1
x2|— : =
k k?

2n R 2=

R
= L_l j rdr j‘ dlg j‘ r'd?” j dglF”'(r, r/)Dur(s, 9,) X
o ()] o o

Aol T

converges. The result (37) can be obtained if we notice that

L

L e®-1 1 -

-]; + 7— = EJv(l'—e ")dx (38)
0

- —-xk 2
fl_e Jo(k)dk = In [’i + \/<1> +1]. (39)
k ) o

Equation (37) can be obtained by integrating (39) over x from 0 to L. The integrand in
(37) can again be expanded into a series [8] and the integration completed.

and [7]

3. Terms important at R tending to zero

These terms are needed for a further discussion. In the case of Ai’,'fcm’ exeh) " also

for s = ¢, only the terms with ®° in the integrand give a non-vanishing contribution
at R —» 0. We obtain
hm Ai{gCoul,exch) — llm Ai:i’(Coul,exch)_: hm Ag;(Coul) (40)
and, for 1 # /', e - ’ e
lim Ai”;‘mh’ =0, (41)
R-0

where the last equation is due to the orthogonality of cos /3 and cos I'S. Equation (40)
and (41) are also valid for s = ¢ The exact value for (40) will be given in a forthcoming
paper.



274

Because Eq. (22) holds, the further examination of integrals may be limited only to
B, ™ in Egs (34). In each case the non-vanishing term (nv) at R — 0 is that which has

R, R"In R (42)

with the power exponent n = m = 0. Starting with / = // = 0, with the aid of (32),
we find

R r
[Bop©Coubexet] - [ pdr{ [ #'dr'[—In (ar)+In 2—y] +
) 0 0

R
+ [ Fdr'[—In (ar)+1n 2—9]}Foo(r, ¥') =

= —Ina+In2—y+Z(R) 43)

where

R r R
Zoo(R) = [ rdr(=Inr [ ¥dr' — [ ¥ln #'dr')Foo(r, ¥') =
0 0 r

R4. R4
= (Qo)* [— - Tln R:l + terms in ug and. higher powers of Ug. (44)
The second term inside the square brackets in (44) gives the logarithmic divergence at
R — 0 and similar divergences give the terms named after the square brackets. The terms
in (43) before Z,, are due to normalization. The same result occurs in Ve LD
and B°1‘°)(C°‘“) Only Z terms change with / and, all being independent of @, have diver-
gences analogous to that of (44).
On the other hand, again with the aid of (32),

r

R
: 2
" 111(2)(Coul,exch) . i) 2
I_B‘t,t ]nu— J‘rdr [a 7’ J‘r 2'4(07 ) dr’ +
0

0
R

- 2 '
+—( r? J G ’]Fu(r,r') 45)

which gives n = 0; the lowest m of B,l,lt(z)(cm'" M) is 4. In the case of (34d) the term with
n =0 is given by

j R r
' 1
[Bpf(DEem] = frdr [—fr’(% ar)dr' +
ar
0 0

R
1 .
+(% ar) fr' — dr’] Fo(r, 1), (46)
: ar
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the term with the lowest m being that with m = 2. Finally, in the case of I, the terms

of (42) with n = m = 0 are given by the first terms in the series developments of

o) e -
o J(5) )= (3)-

=2n
- @n)! (?)
~ h n+1 w
n=1 .

The last expression is valid for L? > &? and, in particular, holds for very small R. The inte-
gration (37) for the constant terms of the devélopments is trivial, giving back those terms,
so there remains the integral of —In & in (47). We take as an example / = /" = 0 and
retain only the first term (= 1) in the development of the Jy-product. We obtain:

R R 2n T
—4Q3Ty [ rdr § v'dr [ d9 [dylné =
o o o 0

0

R n r
2 4 ’ 3 1 2 .
= — -Q5 |rdr | dy{|rdr|Inr+ 5111 (I4+a*—2xcosy) | +
T .
.0 0 '
R

+ [ r'dr' [ln '+ $1In (1+o'*—2a cos x)]} =
R r R

= —=204{f rdr[lnr [r'dr'+ [ rInr'dr]} =
[ o r

= —20§(% R*In R— 7 RY. (48)

In. (48) we have replaced $—9' by y and the integration over 9 and & by that over 9 and .
The terms involving In (cos y) vanish due to the integration over y [7]; « = ¥'/r and o’ = r/r'.
The integration of further terms in Fyo(r, r'), as well as that with the Coulomb Fy Dy,
other than for / = /" = 0, can be performed in a similar way. These integrals, as well as
that of Eq. (48), give at R — 0 divergences identical to that of Eq. (44).

4. Electron-nucleus interaction integrals

The essential part of these integrals has been calculated correctly in [9]. However,
in order to make the presentation of the interaction problem as complete as possible, and
also to remove a minor error, we give now the corresponding derivation in a more detailed
form than before. In general, any FE electron -nucleus integral can be represented in terms of

He = SISt @)
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where

L R 2n

.1 —Zé
SY = T N,N, fcos czdz jJ,(u,r)J,,(tl,/r) Jcos 19 cos 1’3( Ep)
0o - 0

| rdrd3.  (50)

J

Here, Ze is the nuclear charge, N, = Q,T;, and the same holds for /". Vector a; is the
position of the nuclcus on the axis of the cylindrical potential box,

T
¢= PE (1)

where p is an integer. Instead of following the procedure of [9], we directly use (|r—a;|)~!
as given in (10). Since a; = 0 and a;, = |a;| = a;, we have
‘L R

.1
Sg = f N,N,/(—Zez) J\C'OS cZ f],(ulr)J,r(u,:r) X
0 0

2n 0
x [ cos 19 cos I'S | Jo(krye M=~ %ldkdzrdras, (52)
0 0

because other terms in the development (10) vanish. We see that S;," = 0 unless / =17".
When the last case holds, the integration over 3 gives 2% for / = I’ = 0, and 7 otherwise.
The sequence of the integrations over z and k can be interchanged because there is uniform
convergence of the integral over k in the whole interval of z (see the inferences below
Eq. (10)). Two cases can be distinguished: (i) when p = 0 and (i) p # 0. In the first case

R
1 .
St = B (—=Ze»HQ} jJ,Z(u,r)rdrx
0

x | [2—e " —e M ™1 ] (kr)dk, (53)
(0]

which — due to [7] and Eq. (39) — becomes

R

1
St = P (—Ze*)Q? f JEuyryrdr x
0

L —
Juf@e J@ o] om0 [l Gl e
r r r o r

Following e.g. [8] (¢f. also Eq. (47)) the contents of the braces can be represented as a sum
of sh (hyperbolic sine).
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On the other hand, for p # 0,

. R

1
Sh = I (—Ze*Q? f]f(u,r)rdr X

0

dk | 2k el ke cos cL ke & +
— — c —_———rT

x A+k* A+ k? 2+ k2

0

¢ sin cL ’
+ L 55
2+k? (53)

The last term in the square brackets vanishes because of Eq. (51). We obtain

R
1
SZ =T QH(—2Ze? fJf(u,r)rdr X
0

X [2 cos (ca;)K(cr)— {sin (cay) l:g —Si (ca j):l —cos (ca;) Ci'(ca j)} Io(cr)—
—cos cL {sin [e(L—aj)] [g —Si(e(L—a j)):l —cos [e(L—ap)] Ci[e(L—a j)]} Iy{er) —

— P, (cr)—cos (cL)i’L _aj(cr)] (56)

which — with Eq. (51) taken into account —reduces to the formula (7) in [9] except here
we have the terms cos cL erroneously omitted in [9]. Due to these terms and Eq. (51)
we have no change of sign at Si and Ci, irrespectively of whether cL is an even or an odd
multiple of m. Because cL/n can be only an even integer (see [9] and the forthcoming
paper), the formula (7) in [9] could give correct results. In Eq. (56) we have

m= oo 5 —1 ' n=oo o 1
W= y I SR
m=1 n=m

and the analogous formula is valid for P; _,,. Equation (57) is identical with the correspond-
ing expression given in [9].

5. Summary

All the integrals due to the electron-electron operator in the three-dimensional FE
model (Coulomb, exchange and those for the configurational interaction with / =/’
inside any configuration) can be composed from the formulae given in Section 2. For the
case of s = 7 not only terms 4 but also terms B are important. The three-dimensional FE
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integrals for the electron-core interaction can be established in terms of the expressions
given in Section 4. .

The case when the radius of the potential box tends to zero is of special interest for
further investigations and the corresponding formulae for the electron-electron opera-
tor have been set off in Section 3. They cancel the erroneous statement of Part I that
at R — 0 all electron-electron integrals converge and for the 7= —7 interaction are larger
than those for the o—o interaction by a factor of 3/2. The electron-core interaction at
R — 0 can be examined in terms of Eq. (54), with the equation corresponding to (47),
and Eq. (56) with the series development for K, and P.

A detailed examination of the effects at R — 0 will be the subject of a forthcoming
converge and paper.
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