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STRUCTURE FACTOR DETERMINATION OF SINGLE
CRYSTALS WITH HIGH EXTINCTION
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A method of structure factor determination of single crystals with high secondary
extinction is proposed. Spinning single crystal samples are used and absolute values of struc-
ture factors are obtained. Experimental results for bismuth, zinc and aluminium single
crystals are presented and discussed.

1. Introduction

A method for determination of structure factors of single crystals with high second-
ary extinction is proposed and the preliminary rough experimental check of this method
is described.

The method is based on the observed increase of intensity of neutrons reflected from
a rotating single crystal when the speed of rotatio nincreases [1,2]. Fig. 1 shows the general
character of the dependence of the integrated intensity E,,k,(a)') on the angular velocity w
of the spinning single crystal. As it has been previously shown in some detail [2]the increase
of intensity is a combined result of two effects. One is of a “geometrical” nature: while
the neutron travels within the spinning single crystal, the angle of incidence related to
a certain crystallographic plane (ikl) changes and thus the probability that the neutron
once reflected will be once more reflected decreases with the speed of rotation. The
second effect is due to the Doppler effect. While travelling within the rotating single crystal,
the neutron passes crystal regions of different velocities. As the Bragg condition for the
neutrons depends on the velocity of the crystal lattice, the Bragg angle is different in each
of these regions. Thus both effects make even a perfect crystal look like a real one to the
neutron. In the case of a real single crystal the (apparent) mosaic spread increases with
the speed of rotation and thus an increase of reflectivity is observed.
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By increasing the angular velocity of the crystal “saturation” of the measured inte-
grated intensity may be obtained, as shown in Fig. 1, and the saturation value Eyy(0)
can then be used as the extinction free integrated intensity. In other words the ratio
Ejyq (00)/Epy, (0) gives the extinction factor y, as defined by Zachariasen [3]. If however,
the saturation cannot be achieved for the available angular velocities then the fitting

|

INTEGRATED INTENSITY

w

Fig. 1. General character of the dependence of the integrated intensity Ej () on the angular velocity w
of the rotating single crystal

procedure, outlined below, can permit the determination of the absolute values of the
structure factor.

The formula describing the curve shown in Fig. 1 has bzen derived in the Appendix
of the paper [2] using the classical theory of secondary extinction [4]. In the case of
a monochromatic incident neutron beam and nonabsorbing single crystal slab in sym-
metrical transmission geometry (Fig. 2) this formula has the following form:
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where Py(0) — power of the incident beam, v, — neutron velocity, ® — angular velocity

2
of the single crystal, W(46) = ——1: exp (— —(—L@—)—>—Gaussian distribution function
n+/2n 252 :
for the mosaic blocks, 40 — angular deviation of a mosaic block from the mean position,
n — standard deviation of the mosaic blocks, Xo, —Xo — x-coordinates of the slab surfaces
3 2
(see Fig. 2), T — time at which the neutron enters the crystal, Q = -—A—m— — crystal-
V2 sin 20,

lographic quantity, 4 — neutron wavelength, 05 — Bragg angle for the crystal at rest,
¥ — unit cell volume, F — structure factor including the Debye-Waller factor, 7 — dura-
tion of the measurement.

In the case the time-of-flight (TOF) method we obtain a similar formula. In both

cases the function Ej,(w) can be calculated by means of numerical methods. Only two
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parameters of this function are unknown: the structure factor F and the standard devia-
tion of the mosaic blocks 5. By fitting the theoretical curve to the experimental points
one can, at least in principle, find both the structure factor and the mosaic spread. In

Fig. 2. Geometry of the experiment. The neutron beam is parallel to the x-axis. 4BCD — the cross-section
of the single crystal slab spinning around the axis perpendicular to the plane of the figure

Section 2 we transform the function (1) into a form ‘suitable for numerical calculations.
Section 3 contains a brief description of the measurements and a discussion of the results.

2. Formula for numerical calculations

Equation (1) can be transformed by simple mathematics into the following one

+oo z+¢
1 2
Ep(w) = - Aw f [1—GXP<— QUO— J‘ e’k dk>] dt 2
2 oINS .
—© z—¢&
where
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and & = Y2X0®
Vol

In order to simplify the numerical calculations we approximate the internal integral
in Eq. (2) by

a
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and we obtain finally
5+¢
- U0

Epg(w) = A/27 f l:l—exp{— = x 4
0

«w

X (P(z+&)—sign (z—-)P(1z— ¢ I))}] dz.

The function ¢(a) is tabulated for values of @ = 0.002n (n = 1, 2, 3...2500). For other
values of a in the interval 0-5 the linear interpolation method was used.

The values of the parameters 4, v,, ¥, 05 and x, are known for given experimental
conditions. The values of the parameters F and n were determined from the least squares
fit of the theoretical values Ej (), described by Eq. (4), to the experimental values
Eyy (w;) for the angular velocities w;(i = 1, 2, 3, ...). 4

The procedure outlined above was performed with the help of the GIER computer.

3. Experiment and results

The majority of the measurements was performed on standard double axis spectro-
meters (DAS) located at the 8 MW reactor EWA at Swierk?. Fig. 3 illustrates the prin-
ciple of the experimental set up. A collimated monochromatic neutron beam with
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Fig. 3. Experimental set up (schematically) in the case when a monochromatic neutron beam is used
(Double Axis Crystal Spectrometer — DAS)

2 = (1.1940.01) A is scattered by a spinning single crystal with the zone axis parallel
. to the axis of rotation and perpendicular to the plane of the figure.

The intensities of neutrons scattered by the single crystal are measured by the BF;
proportional counter placed in the Bragg position for the reflection under investigation.

! The authors are obliged to Drs J. Leciejewicz, A. Murasik and A. Oles for permission to use the
spectrometers.
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Because of the lack of collimator in front of the detector, it was possible to measure the
integrated intensity for a given reflection without moving the arm of the spectrometer.
Some of the single crystals were also investigated by the TOF technique. The principle
of this method is described in Ref. [2].
The samples, prepared from different single crystals, were in the form of cylinders
or slabs, as shown in Table I. In the case of cylinders a special set of cadmium slits was

TABLE I
|AF|
Reflecticn Method Shape Foaie x 10712 cm | Fexpx 1072 cm | ——— x 100%
calc
110 TOF slab 1.67 1.86 17
Bi 110 DAS cylinder 1.67 1.67 1
121 DAS cylinder 1.51 1.51 1
220 DAS cylinder 1.26 1.48 \ 16
110 TOF cylinder 1.12 1.16 } 4
Zn 110 DAS cylinder 1.12 1.39 24
220 DAS cylinder 1.12 1.39 } 24
Al 222 TOF slab 1.21 1.09 10
222 DAS slab 1.21 1.09 10

AF = Fcalc —Fexp-

used in order to permit the application (with satisfactory approximation) of the formula (1)
derived for a slab in symmetrical transmission geometry. All measurements were made
at room temperature.

Typical results for both methods are shown in Fig. 4 and 5. They show the integrated
intensity of the reflections (110), (220) of a rotating bismuth single crystal as a function of
the spead of rotation. The circles are the measured values, whereas the solid curves are
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Fig. 4. Integrated intensity (arbitrary units) versus frequéncy of rotation (RPM) for the (110) reflection
of bismuth. The circles represent the experimentally measured integrated intensities (DAS method) and
the curve is calculated by the least squares fit (see text)
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calculated as described in Section 2. Similar curves were obtained for aluminium and
zinc single crystals. " .

Table I shows the structure factors F,, obtained from the least squares fit (with the
use of formula (4)) and the structure factors F,,, calculated from the known structure
(the latter ones contain simple Debye-Waller factors).

e AF ' ;
The relative deviations? Lo from the calculated values are quite large. However,

calc

it should be remembered that the deviation is related to the arbitrary chosen single reflection.
In addition, as mentioned in the introduction, the measurements were made in a ‘very
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Fig. 5. Integrated intensity (arbitrary units) versus frequency of rotation (RPM) for the (220) reflection
of bismuth. The circles represent the experimentally measured integrated intensities (TOF method) and
the curve is calculated by the least squares fit (see text)

crude way. No corrections for thermal diffuse scattering, absorption efc. were made.
It should also be recalled that the classical theory of extinction [4] was applied, which
is not the most advanced one [3]. Moreover, the Debye-Waller factors have been esti-
mated in a very simple way and most probably they are not very accurate.

Taking all this into account the agieement seems to be not too bad. Thus we believe
that the proposed method may present a useful tool for the determination of the absolute
structure factor of single crystal with high secondary extinction. However, this conclusion
must be checked by much more precise measurements and calculations.

The authors are obhged to Dr Bente Lebech for reading the manuscript and for
interesting comments. Thanks are due to Miss B. Czerwifiska and Miss B. Wentowska
for their help in the numerical calculations.
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