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ISOTOPE SHIFT OF 1s—2p AND 2p - 25 LINES IN Nel SPECTRUM
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" The values of specific isotope shift of the 1s—2p and 2p—2s lines in the Nel spectrum
are calculated. Intermediate coupling in the neon atom is accounted for by using 'coupling
coefficients and peculiar wave functions. The calculated values correspond fairly well with
experimental data.

.

1. Introduction

An atom consisting of a nucleus of finite mass and electronic shell composed of two
or more (N) electrons is described by a Hamiltonian of the form

N
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SR BRSNS ®

i=1 i>j

where pt = mM/(m+ M) is the reduced electron mass, and ¥ is the operator of electrostatic
interactions in the atom. It is evident from. the form of the Hamiltonian that to the energy
eigenvalue found by the central field approximation two corrections must be added. The
first, proportional to the value of the term, is known as the mass isotopic effect and ex-
pressed by the formula '

. m

N=T-T,=—-T, i )]
where T, and T respectively denote the value of the term in the central field approxima-
tion and after the finite nucleus mass is considered.

The other correction depends very strongly on the state of the electronic shell and is
directly associated with the correlation of the momenta of the electrons in the atom. It
is called the specific mass isotopic_ effect.and may be calculated by the first approximation
of perturbation theory. This procedure is well-founded, for the isotope shifts of terms
are much smaller than the terms themselves. In the one-electron approximation the

* Address: Instytut Fizyki, Uniwersytet Jagiellonski, Krakow, Reymonta 4, Poland.
(235)



236

atomic wave function is assumed to be the product of normalized one-electron functions
N

Y= H J With due consideration of the normality of the wave function at infinity we
E=1

get for the specific effect the following expression:

hz
AT Z JT*ViVdet =
S

hz * *
= M Z ffjvifiﬁij:deide . (3)
i>j ;

Condon and Shortley [1] have given formulae for matrix elements of a quantity

symmetrical in indices Y g(i, j) corresponding to our operator. We write the wave function
ij _

in the form of a determinant ensuring proper symmetry and take under consideration two

functions differing by at most two sets of quantum numbers. We then obtain for the matrix

elements of ¢ the expressions

h? A
\CluLra Z [<LIVIfi28(mg, m)) 4
i>j .

h? , ,
ol = — S [KEIVISD KAV >oGms, ml)a(m], mi)—
=LV LFVIf > 3(m, m)d(mg, mY) G

where f stands for the one-electron function, and « and f are two different functions of
the atom. With the selection rule 4m; = 0, +1 and Al = 1 taken into account, we get
only three matrix elements: :

(I’ —m})2m Ry

2 . 3! '_ i
m.}(”,l,n,l 1) (6)

_'h2|<ns la mllvln,s l_]-, ml>|2 =

(I+m;—1) I+ m)2m Ry ‘
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where

0

Gl ol JP(’: )] [rdP(n’,l—l) »—lP(n',l—l)J ir. ®
0

dr

o0
In the latter expression the integrand is a radial function of normalization [ P2dr = 1.
¢

Formula (1) indicates the essential role of the angle between the radius vectors of the
clectrons in the atom expressed by the scalar product V; -V ;. Correlation of electron
momenta leads on the one hand to the emergence of the specific mass isotopic effect,
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whereas on the other it finds expression in the shape of the radial wave functions describ-
ing the atom’s state. It should be noted that the correlation of electron momenta is in-
troduced into the Hamiltonian not by the angles of phase shift between the electron radius
vectors, but by the distances r;, between the i-th and k-th electrons, which via electro-
static interaction between the electrons affects in the end the shape of the radial functions.
This evident relationship allows the specific isotopic effect to be regarded as a criterion
for verifying wave functions from the point of view of correlation of electron momenta
in the atom [10].

2. Calculation of the specific effect in Nel atom for the pair of stable isotopes
20Ne and 22Ne

In this paper we present the calculated specific isotope effect for transitions between
the configurations 2p*3s, 2p*3p and 2p°4s. To be atle to calculate the integrals J(n, [; ', [—1)
for these transitions there must be available the wave functions of the ground state and
the excited states 3s, 3p and 4s. The wave functions of the Ls, 2s and 2p states were adopted
from the paper by Gold and Knox [13]. They concern the excited state of the Nel atom
in which one of the 2p electrons transited to the 3s orbit. These functions were also applied
in the case of higher excited states, assuming that when transitions proceed to orbits higher
than 35 changes in the core are negligible. The wave function of the 3p state has been
calculated by Brown and published in the paper by Bartlett and Gibbons [2]. These
functions have already been used in calculations in earlier theoretical studies. But for the
excited states 3s and 4s the functions used here are new ones.

For the 2p®3s configuration the functions were calculated on the basis of data published
by Vainshtain and Minaeva [6]. In their paper they give the coefficients of expansion of
wave functions of intermediate couplings into a combination of functions in the L—S
coupling. These functions, therefore, take the form

Pr =) (F/N)Y¥; ©)
LS

where ¥ are the initial L—S functions, I is the set of quantum numbers (y[S,L,]3/ [SL]J),
and I' is the index of the wave function corresponding to the intermediate coupling.

The expansion coefficients (I'/T") are given in Table I. The last column illustrates the
orthogonality of the matrix of coefficients.

TABLE I
Expansion coefficients of wave functions
sp, sp, 1p, 3P, ; (TI)?
3P, 1 —_ — — 1
31?1 - 0.964 0.266 — 1.00005
1]_31 — —0.266 0.964 — 1.00005
3P, — — — 1 1
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The initial functions were those of Gold and Knox for the terms 3s(*P) and 3s (*P).
They were calculated by the Hartree-Fock method employing the 2p® (1S,) functions of
Nel as trial functions. '

Since wave functions of higher excited states of neon are hitherto unavailable in the
literature, the required function was computed by the Hartree-Fock-Slater method in the
analytical approximation of the Herman and Skillman method. Use was made of the
program described in Ref. [5]. This function had the form ) a;"e™*", where n; are positive

i

TABLE 1I
Values of 4s state wave function of neutral neon calculated for virtual state

r 4s(3P, 1P) r 4s(3P, 1P) r 4s(3P, 1P) ‘ r 4s(3P, 'P)
0.00 0.0000 0.35 —0.0523 0.70 —0.0766 1.60 0.0832
1 0.0114 6 —0.0552 1 —0.0757 1.73 0.1045

2 0.0204 7 —0.0579 2 —0.0747 1.86 0.1239

3 0.0275 8 —0.0605 "3 —0.0736 1.98 0.1414

4 0.0328 9 —0.0629 4 —0.0725 2.00 0.1430

5 0.0366 0.40 —0.0652 5 —0.0714 2.24 0.1689

6 0.0392 1 —0.0673 6 —0.0702 2.50 0.1881

7 0.0406 2 —0.0692 7 —0.0689 2.75 0.1992

8 0.0410 3 —0.0710 8 —0.0676 3.00 0.2030

9 0.0406 4 —0.0727 9 —0.0663 3.26 0.2002
0.10 0.0395 5 —0.0742 0.80 —0.0649 352 |- 0.1915
1 0.0377 6 —0.0756 1 —0.0635 3.78 0.1776

2 0.0354 7 —0.0769 2 —0.0621 4.00 0.1618

3 0.0327 8 —0.0780 3 —0.0606 4.54 0.1118

4 0.0295 9 —0.0790 4 —0.0591 5.00 0.0612

5 0.0260 0.50 —0.0799 5 —0.0576 5.57 —0.0073

6 0.0223 1 —0.0806 6 —0.0560 '6.00 —0.0599

7 0.0183 2 —0.0813 7 —0.0544 6.59 —0.1287

8 0.0142 3 —0.0818 8 —0.0528 7.00 —0.1719

9 0.0100 4 —0.0822 9 —0.0511 8.0 —0.2582
0.20 0.0057 5 —0.0825 0.90 —0.0494 9.0 —0.3135
1 0.0014 6 —0.0827 1 —0.0478 10.0 —0.3340

2 —0.0030 7 —0.0828 2 —0.0460 11.0 —0.3430

3 —0.0073 8 —0.0828 3 —0.0443 12.0 —0.3292

4 —0.0116 9 —0.0827 4 —0.0425 13.0 —0.3045

5 —0.0159 0.60 —0.0825 5 —0.0408 14.0 —0.2738

6 —0.0201 1 —0.0823 6 —0.0390 15.0 —0.2407

7 —0.0242 2 —0.0819 7 —0.0371 16.0 —0.2078

8 —0.0281 3 —0.0815 8 —0.0353 17.0 —0.1767

9 —0.0320 4 —0.0810 9 —0.0335 18.0 —0.1483
0.30 —0.0357 5 —0.0805 1.00 —0.0316 19.0 —0.1230
1 —0.0393 6 —0.0798 1.09 —0.0148 20.0 —0.1011

2 —0.0428 7 —0.0791 1.22 0.0105 25.0 —0.0335

3 —0.0461 8 —0.0784 1.34 0.0357 30.0 —0.0092

4 —0.0493 9 —0.0775 1.47 0.0605 35.0 —0.0020

' 40.0 —0.0003
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integers. Some of the expansion coefficients a;, 7; and o; were adopted from the paper by
Allen [3]. Since Allen’s expansion proved to be a good approximation only for orbitals
occupied in the ground state, this expansion has been extended to include terms of the
type 1"e~*", where the parameters ; (= 3, 4) and a; were determined with the use of
Slater’s rule for orbitals of excited atoms. The expansion coefficients a; (i =1, ..., 12)
were found by the variational method. In this way a basis numbering 12 initial functions
was obtained. It should be emphasized that the wave function of the excited state 4s
acquired by this procedure does not account for changes in the electronic core at excita-
tion of the atom. The numerical values of this function are given in Table IL

When calculating the specific effect account was taken of the intermediate coupling
occuring in neon by using Stone’s X-parameters [4], which define the contribution of
a given level ns; (Paschen notation) to the total isotopic effect. The values of these para-
meters are given in Table III.

TABLE III
Values of X-parameters
Level 1Sy nss ns, nsy
X(n=1) 0.380 1 0.953 1

X(n=2) . 0.593 1 0.741

Changes in the 1s?2s22p® core of electrons at transitions of a valence electron are
allowed for in the constants 4 and B. They are calculated by normalizing theoretical
results to experimental data for one of the transitions. The specific effect was computed
from the following formulae:

2m RyAM ( 1_, ) '
1s,—2p) = — > —— 3 A+ - [J*(3p, 15)+J°(3p, 28)] - -
o(1s,—2p) Mo, | +3[ (3p, 1) +J*(3p, 29)]
—-X - J*[2p, 3s(1P)]} (10)
2m Ry AM 1 .
15,=2p) = ————— 4 A+ = [J*(3p, 19)+J*(3p, 29)] -
a(ls;—2p) = MlMZ_{+3[ (3p, 1)+ J°(3p, 29)]
—-X - J[2p, 3s(3P)]} (i=3,4,5) (11)
2m Ry AM

o(2p—2s) = — - {B— i [J2(3p, 1s)+J%(3p, 29)]+

MM,

+X - J*2p, 45)} (i=234,5). (12)
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The integrals J were calculated by means of a computer. The following results were ob-
tained:

J(@2p, 1s) = —2.7996,

J(2p, 2s) = 0.7565,

J[2p,3s(3P)] = 0.2991 (for the Lsy level),
J[2p,3s(3P)] = 0.2483 (for 1s; and Lss levels),
J[2p,35('P)] = 0.1513,

J(2p, 4s) = 0.1286,

J(3p, 1) = —0.4412,

J(3p, 2s5) = —0.0457.

These values were put into formulae (10), (11) and (12).
The constant 4 was calculated for the transitions between the configurations 2p%3p
and 2p*3s by normalizing the theoretical value of the shift for the ls, —2p transition:

2+ 109737.303 - 2
s e a0 25

1
I:A + 3 (0.1947+0.0021) —

—0.953 - 0.085] = A'+0.0356—0.0463 = ,
= A'—-0.0107 . 0.0165 K .

Whereby A’ = 0.0107+0.0165 = 0.0272 K. The other shifts are as follows: o(ls,—2p) =
= 0.0272+0.0356 —0.5434 - 0.38 - 0.0229 = 0.0581 K. The expetimental value of the
latter shift is 0.0372 K. This mean value is calculated with the exclusion of the transition
from the 2p; level owing tothe large deviation of this shift from the remaining values.
Taking account of Stone’s coefficients causes the theoretical.values for the ns; and nss
levels to become identical. We have hence

o(ls3—2p) = o(1ss—2p) = 0.0628—0.5434 - 0.0616 = 0.0293 K.

The experimental value for the 1s;—2p transition is 0.0148 K, whereas for the 1ss—2p
transition 0.0156 K. When the average of these values was being found transitions from
the 2p,, level wer'e’disregarde(’i because of the large deviation of this shift from all other
values for the remaining 2p levels.
The constant B for the 2p,,—2s; transitions were calculated by normalizing the shifts
of the 2p,,—2s, transition: a
0(2p10—2s4) = B'—0.5434 - 0.656+0.741 - 0.009 = B’ —0.0289 = 0.014 K.

df
Whereby B’ = 0.0289—0.014 = 0.0149 K. For the other transitions the shifts are as
follows:
0(2py0—2s,) = 0.0149 —'0§0356+O.’0593 +0.009 = —0.0154 K.
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The experimental value is —0.021 K.
0(2p10—253) = 6(2p;0—2s5) = —0.0207+0.009 = —0.0117 K.

For the 2p;o—2ss transition the experimental value is —0.009 K, whereas no experimental
data is available for the 2p;,—2s; transition.

When calculating the isotope shift of the 2p,—2s, transition the difference between
the experimental data for the lss—2p;, transition and the mean for the other 1ss—2p;
transitions was accepted as being the same for 2p—2s; transitions. This difference is, ac-
cording to the data of Odintsov [11], 0.0031 K. Because of this change the constant B’
for 2p;—2s; (i # 10) transitions takes the value of B” = 0.0149+0.0031 = 0.0180 K. For
these transitions, hence, we have

a(2p;—2s,) = 0.018 -0.0356+0.0053 = —0.0123 K.

The experimental value for the 2p,—2s, transition is — 0.0128 K, after Refs [14, 15]

These results are compared in Table IV. The experimental data for the 2p,,— 2s
transitions are taken from Refs [7, 8]. Experimental error is +3mK. The data on the
shift for the 2p,—2s, transition were taken from Refs [14, 15], in which the estimated
errors are given as +0.1 mK [14] and £0.3 mK [15]. For the 1s;—2p; transitions the

TABLE 1V
Comparison of calculated specific isotope shifts with experimental data for Ne and 2>Ne
. Theoretical value
Weighted mean
Transition (exp. vKalues) present ﬁaper Gabla [10]
[mK] [mK] [mK]
|
1s,—2p; ((# 1) 37.2 [7,8,9, 11, 12] ‘ 58.1 37.55
15,—2p, 33.5 [7,8, 9, 11, 12] — —
1s3—2p° 14.9 [7, 8,9, 11, 12] 29.3 14.64
1s,—2p 16.5 17,8, 9, 11, 12, 15] 16.5 (norm.) 16.22
1s;—2p; (i # 10) 15.6 [7,8,9, 11, 12] 29.3 14.64
155—2p10 18.4 [7,8,9, 11, 12] 32.4 =
2p1o—2s5 -9 [7,8] —11.7 —
2p10—258, —14 17, 8] —14 (norm.) —
2p19— 255 —21 17,8] —15.4 -
2p,—2s, —12.8 [14, 15] —12.3 —

weighted mean is calculated from all experimental results reported in Refs [7, 8, 9, 11, 12,
15]. The weight coefficients were the reciprocal of measurement errors. Table 1V also
contains the references from which data for calculating the various values were taken.

It must be emphasized that the comparison in Table IV shows a worsening of results
for the 1s—2p transitions as compared with earlier calculations of Gabta [10]. The same
calculative formalism had been used then, the wave furctions of Gold and Knox bzing
employed for the 2p®3s state and those of Brown for the 2p°3p state. Thus, the values of
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the integrals J(2p, 1s), J(2p, 2s), J(3p, 1s) and J(3p, 2s) are.identical with -those" givenv
here, but for J(2p, 3s) the values of 0.2482 and 0.2261 had been obtained for terms 3P
and P, respectively. The existence of intermediate couplings had been accounted for
through X-coefficients introduced by Stone. The.additive constant due to the core.had.
been determined, as here, by normalization to one of the most. reliable experimental
results. Although use has been made here of wave functions corresponding to intermediate
couplings for the 2p°3s configuration, in agreement with the results of Vainshtain and
Minaeva, the outcome has proved to be in worse agreement with experimental data than
‘before. This may perhaps be caused by the fact that the Vainshtain-Minaeva coefficients
were applied to wave functions of terms, and not levels. Functions for levels are un- -
available in the literature at present, however.

The authors thank Professor A. Golgbiewski, Head of the Department of Theoretical
Chemistry of the Jagellonian University, for consultations in the matter of wave functions
and J. Mrozek, M. Sc. for help in calculating the wave functions.
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