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INFLUENCE OF THE TRANSVERSAL MAGNETIC FIELD ON
A UNIAXIAL FERROMAGNET WITH PLATE-LIKE DOMAIN
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The influence of a homogeneous external magnetic field on a uniaxial ferromagnet
with plate-like Kittel-type domain structure is examined for the case when the field is per-
pendicular to the anisotropy axis and normal to the 180° Bloch walls. A hexagonal close-
-packed crystal lattice with nearest-neighbour exchange interactions is assumed, the anisotropy
being described by pseudo-dipolar spin coupling. The Euler-Lagrange equation for the domain
structure is solved under periodic boundary conditions, and analytic formulae for the field-
-dependence of the magnetization, susceptibility, wall thickness and wall energy are derived.
Due to the neglect of the magnetostatic self-energy in the considerations, the numerical
magnetization curve for Co is found to be in qualitative agreement with experimental data
for fields up to 200 Oe only. In contrast to recent theoretical results obtained by other authors
for single-domain uniaxial ferromagnets, the periodic domain structure is shown to cancel
the field-induced second-order ferro-paramagnetic phase transition.

1. Introduction

The influence of a homogeneous external magnetic field on the plate-like Kittel-type
domain structure [1] in uniaxial ferromagnets has first been examined in [2, 3] by em-
ploying the phenomenological macroscopic theory, and later in [4,5] by using the micro-
scopic formalism proposed in [6] and elaborated in [7]. In the papers [2, 4], a field
parallel to the anisotropy axis (longitudinal field) has been considered, while in [3, 5]
the field has been assumed to be perpendicular to this axis (transversal field) but parallel
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to the 180° Bloch walls of the domain structure. A phenomenological uniaxial aniso-
tropy has been assumed in [2, 3], whereas the analysis in [4, 5] was based on nearest-
-neighbour pseudo-dipolar spin interactions which lead automatically to uniaxial aniso-
tropy in the respective crystal lattices [8-11]. The considerations in [4, 5] were confined
to a simple hexagonal crystal lattice and have been extended in [12, 13] to a wide
crystal class. Recently, the influence of the temperature on those magnetization processes
has been studied qualitatively by using the molecular-field approach [14]. The displa-
cement of Bloch walls under the influence of a longitudinal magnetic field has also
been analysed theoretically in [15].

So far, the theory has not yet been extended to the case when the external field is
perpendicular to the anisotropy axis but, at the same time, perpendicular to the Bloch
walls. It is the aim of the present paper to study this case, by employing the formalism de-
veloped in [4-10] and assuming a close-packed hexagonal crystal lattice. This extension
of the theory is the more desirable in view of the experimental results reported in [16, 17],
where quite precise magnetization curves for single-crystalline Co have been obtained and
shown to depend strongly on the type of domain structure. Moreover, in the case of the
layerlike Goodenough-type domain structure the magnetization curves in [17 ] have also been
found to depend on the orientation of the 180° Bloch walls with respect to the transversal
magnetic field. On the other hand, theoretical investigations showed [18] that in uniaxial
ferromagnets a perpendicular orientation of the Bloch walls in a transversal field is energet-
ically most favourable.

There is one more reason for closer examining the influence of the transversal field on
ferromagnets with domain structure, which resides in the newly discovered second-order
ferro-paramagnetic phase transition that occurs in uniaxial single-domain ferromagnets
in a transvgrsal field. By now, this effect has been obtained by different methods in a number
of papers [19-26]. We shall show that the plate-like domain structure with 180° walls
cancels this phase transition if the field is perpendicular to the walls. This result may well
explain why the existence of this particular phase transition is hard to prove experi-
mentally [27].

2. The energy of the system
3
Following [4, 5], we start with the Hamiltonian
H= —pg#*y 84— % Z Y 6}

where
(Jij+Ci)6™ =3Cyr; 2}, for nearest neighbours,
PS = @
0 otherwise.
Here u denotes Bohr’s magneton, g is Lande’s splitting factor, #* is the a-component of

the external (homogeneous) magnetic field, S§ are spin operator components assigned to
the lattice site i, r{; are the components of the lattice vector from site i to site j, and Jij >0
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and Cj; < 0 are respectively the Heisenberg exchange integral and the pseudo-dipolar
coupling constant, both depending on the distance r;; between the lattice sites i and j.
To the tensor indices a, b (= 1, 2, 3) Einstein’s summation rule is applied.
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Fig. 1. Labelling of the atoms in the first coordination sphere of the -close-packed hexagonal crystal
lattice

In labelling the sites within the first coordination sphere of the hexagonal close-
packed lattice (Fig. 1) we use a similar notation as in [8]. Thus, the components of the
nearest-neighbour lattice vectofs can. be written in the form

cos [y+n(j—1)/3]
() = a|sin [p+n(j—1)/3] €))
0 / .
for j < 6, and
y cos [y +7/6+2n(j—1)/3]
@) = b | ysin [yp+n/6+2a(j—1)/3] )
B G AN (BO |

for 6 < j <12 where y = sin 6 = a/b /3, the angle v is arbitrary, and the coefficients
a and b denote the nearest-neighbour distances between atoms belonging to the same
and to neighbouring hexagonal crystal planes, respectively. (They are not to be confused
with the tensor indices). - '
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We choose the hexagonal crystal axis as the x;-axis of our coordinate system (direc-
tion of easiest magnetization) and assume the 180° Bloch walls to lie in the x,0x3 plane,
as shown schematically in Fig. 2 for the field-free case. (Note that, according to [8], the
hexagonal axis [0001] is magnetically preferred if b < @). Hence, upon specifying

%a = % 5a1

we have a transversal magnetic field of strength # which is perpendicular to the Bloch
walls. The magnetostatic self-energy of the sample in its own demagnetizing field (origin-

.

*y

X2
- Fig. 2. Modél of the plate-like Kittel-type domain structure

ating from the magnetic poles on the basal crystal surfaces) is neglected in the Hamil-
tonian (1). ‘ , )

" In the familar one-dimensional model of the Kittel-type domain structure, the atomic
magnetic moments all lie in the x,0x; plane and vary merely their direction on passing
from one domain to another. Thus, in the field-free case their direction can be described

’ by the angle ¢ measured, e. g., from the x3-axis (Fig. 3) and depending only on the variable
x;.. For simplicity, we assume that the field (5) inclines all the magnetic moments uniformly
toward the field direction, i. e., the inclination can be described by a single angle & me-
asured from the field direction and depending only on the field strength #, Fig. 3. Thus,
the problem reduces to determining the functions @(x;) and 9(#).

Let us define the unitary transformations U and 7V,

U=[IU, Ui=exp(ipS), USU" =USUS =UPs,
1 0 0 ‘
(U =| 0 cosg, —singi |, ©6)
0 sing; cos o;
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V=TIV, Vi=exp(idS?), VSW*=VSW'" =V’s;
. cos9 0 sind-
vy = o 1 0 | Q)
—sind 0 cosd

of which the first one corresponds to an 1nhomogeneous rotation of the lattice spins
about the x;-axis by the angles ¢;, while the second one rotates the spins umformly about
the x,-axis by the angle 9. Now, according to [6-8] the equilibrium domain structure
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Fig. 3. Definition of rotation é.ngiés @ and ¢
should correspond to the minimum (with respect to @(x;) and $(3#)) of the following mean
energy:
h((;o,, '9) = <¢ia ngl‘pi’ ‘9> . <0|WHW+]0> =
= —peS Y. HWD L 52 2 P;‘,”W“3Wb3 (8)
where W = UV, W® = UfV®, Sis the max1mum spm eigenvalue, and |0 > is the satur-

ation state in which all the spins:are ahgned along | the positive xj;-axis.
The next step resides in passing to corntinuous ‘variables,

{o} > o), - X Vo' [dv )

where V, = VIN = a3(1—92)"22y, V being the volume of the crystal (assumed to be a
rectangular prism with dimensions L;, L,, L3 in the directions x,, Xx,, x3, respectively)
and N the number of lattice atoms. With the approximations made in [8] we finally obtain
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for the mean energy 4 = h/V:per unit volume the formula
Ly
h = Qo+Q; sin®3 | {k ?¢*~ cos’p+ V(9)}dx, 10)
° )
where
12
Qo =28*V5 ' ¥ P = 28%V5 H{6(J,+J,)—3C, —3C,(3y2=2)},
: .5 <

) A, € for j<6,
Jip Gy ‘{ J,, C, for 6 < j < 12, an

Qi =n/V,Ly, 2p=35° jg:l (Piljll—Pisjs) = 9SZ{C2(2"372)*C1},
¢ = dpldx,, x =1kosin9,” kg = 1o,
49 = 57 jlil (r)?P2 = :‘&\2.'5‘2{3J1—;-J2+3CI/4+C2(1—3y2/4)},
V(9) = —2wcos §sin? 3, w = ugS#|2y.

In deriving Eq. (10) we utilized the specification (5).

"~ 3. Minimization of the energy

The energy density (10) is a functional on (p()ﬂ) and a function of 9. The Euler-
-Lagrange equation

K~2p—sin p cos ¢ = 0 (12)

is actually the same as for the field-free case in [8]. The first integration leads to

k™2 2 = C—cos?p (13)
and the constant C can be determined from the periodicity condition
o, £nd) = p(x)tnm, n=0,1,2, ... (14)
which upon the second integration takes the form
2n
d :
I——"’ =24 , (15)
Jx JC=cos?p

where 4 is the domain width. According to experimental investigations [16], 4 can be
assumed as being field-independent. The condition (15) relates 4 (which is to be considered
as external parameter) to the modulus k* = C™! of the complete elliptic integral K(k) of
the first kind, _ 2 ,

: K(k) = xd/2k = xyd sin )2k, (16)
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which, in turn, determines the solution of Eq. (13),
L cos g = —sn(gx,), g = Kok lsinJ. a7

The above solution depends on the field strength #, through 8. To determine this
dependence, let us assume L;/24 = m, where m is a positive integer, and calculate the
energy (10) for the solutlon (17) By utilizing Eqs (13), (14) we obtain

§ . 2n 5
h= Q0+2Q11m'1 sin? 9 f{ﬂ__”’—} dv, (18)
o d J1—=k*sin®yp

P =3[V®+k]
which, by making use of the relation (16), leads to the result et
h = Qo+80,{Exy k- sin 9—A[2wk? cos §+sin® §1/4k?} (19)
where E = E(k) is the complete elliptic integral of the second kind. In minimizing Eq. (19)
with respect to 9 we note that
dh/d9 - 6h/69 + [(6h/ 6E)(dE/dk) + ah/Bk 1(dk[d9). (20)

However, one easily Verlﬁes that in our case the sum 1n the brackets Vamshes, due to
Egs (16), (19) and the. relation (cp.- [28]) 5 e

dE/dk (E-K)k. -~ = -T2y
Hence, the necessary minimum condition reduces to 8h/69 =0 Wthh leads to the equation
_2‘k’E1cQ 1421 cos Qf sin'9 cos 9-|jcuk2 sin =0. - 22)

The solution of this ;alration that corresponds to a minimum of % is
tan 9 = 2(K— E)/wkrod = —2(dE|dk)[kq0A. 23)

For the field-free case @ = # = 0, § = /2 we conclude from Eq. (16) and [8] that
0 < k < 1 (for finite 4), hence dE/dk # 0, while for  ~5# — oo Eqgs (16) and (23) imply
that k& — 0, in which case (dE/dk)— 0 (cp. [29]). Thus, the solution (23) has the physically
correct limit values
lim9% = lim 9 =#x/2, lim3 = lim $=0 24)
-0 - H -0 ®—00 H—>00
and is a continuous and monotonic function od the field strength #, as K, E and dE[dk
are continuous and monotonic functions of the modulus k.

4. The magnetization curve

If L;/24 is an integer, the net longitudinal magnetization (i.e., the magnetiiation
component along the anisotropy axis x3) of the sample is obviously zero, like in the field-
-free case. Let us thus calculate the transversal magnetization along the field-direction,
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which is given by the simple formula (per unit volume)
I(w) = Iycos 9 = I, cos arc tan [2(K— E)[okicod ] 25)

where I, = ugS/Vy is the saturation magnetization per unit volume. From Eq. (24) it
follows that

Iml=1mI=0, IlmlI= limI=1I, (26)

©-0 H—0 -0 S0

and that I is a continuous and monotonic function of the field strength #.

5. The magnetic susceptibility

The transversal magnetic susceptibility y = dlld# is conveniently expressed through
the relative magnetization I* = I/I, and the relative susceptibility x* as follows:

1) = Io(dl*|do)dw/d#) = I(dw/d# )y = (ugSTo/n)y*(w). @7
Hence, from Eq. (25) we obtain
¥ w) = {2K0Ak(K — E)/[(wdkxo)*+16(K— E)?]—
—2(k*K— E')(dk/dw)/wxokikgd} sin arc tan [2(K— E)/wxskd] (28)

where k%, = 1—k2. By utilizing Eqs (16), (23), (24) and the behaviour of the complete
elliptic integrals K(k), E(k) for k -0 and & S 1 (cp. [29]), one easily proves that

lim " = (y/ugSI,) lim x=1, lim y = lim y =0, 29
#-}0

-0 -0 S+

and that y is a continuous and monotonic function of the magnetic field strength .

6. The Bloch wall thickness
The thickness & of the 180° Bloch wall can be defined as (cp. [2-5])

0 = n/lp(p = m/2)]. (30)

This definition is illustrated in Fig. 4 for the solution (17) in the case k < 1, i.e., k4 > 1
(weak field and large domain width, i.e., large crystal thickness Ly; cp. [30-33]). Noting
that C-1 = k2, Eq. (13) leads for ¢ = 7/2 to the result

6 = mk[icy sin & = Jyk/sin 9. (€2))

From Eqs (16), (24) we easily conclude that %” — 00 _impl_ies k — 0, in which case K — 7/2
(cp. [28, 29]). Thus, we obtain the physically reasonable limit values

lim 6 = 8ok, lim & = 4, (32
9?-»0' H>0
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of which the first one coincides with the field-free result obtained in [8]. As in this case
& — 1for 4 — o0, Eq. (16), we see that §ok — ¢ in the asymptotic limit of the phenomeno-
logical theory [10, 34, 35]. Like the magnetization and susceptibility, the Bloch wall
thickness (31), too, is a continuous and monotonic function of the external field strength #.
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T

Fig. 4. Definition of the Bloch wall thickness &
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Fig. 5. Influence of the external transversal magnetic field # on the solution (17)

From Eqs (16) and (23) it follows that for very large field strengths k — 0, i.e., K — 7/2,
in which case the solution (17) approaches the asymptotic form [29]

cos ¢ = —singx;, ie, @ =qgx;—72 33)
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with ¢ — 2K/A — n/A. Thus, with increasing field strength the angle ¢ becomes gradually
a linear function of x,, the walls becoming hardly distinguisha’ble from -domains (spiral
structure), as shown schematically in Fig. 5. At the same time, however, the spin spiral
folds down upon the field direction, as 9 — 0 (cp. Fig. 3).

7. The Bloch wall energy
According to [8], we can define the energy density ¢ per unit area of the Bloch wall as
o = A(h—hy) (34

where s and &, denote respectively the value of the functional (10) for the solution (17)
and for the saturation state ¢ = ¢ = 0. Denoting gx, = ¢ and making use of Eqgs (13),
(16), (17), (23) and C-' = k2 we obtain

4
0 = Q;L;sin? 9§ [ (1+C—2cos? p)dx, =
0

K
= QL AK™" sin® ${kiK/k*+ | cn’tdt} =
S Sk

= 2Q,L,k ™ 'ig 'QE—k2K)sin § =
= 2V5 'k™ ko '(2E—kgK) sin arc tan [2(K— E)kicqwA] (35)
when noting that

L, -4
OI dx; = (Ll/A)OI dx, (36)

due to Eq. (14). From AEqs'( 16, (21) and (24) we get, similarly as in Eq. (28), the limit values
lim ¢ = 27QE~k3K)[kVox, = 0(2E—K2K)[2k,

H-0
lim ¢ =0 &)
S0
and readily prove that g, like all foregoing quantities, is a continuous and monotonic
function of the field strength #. Ask — 1 for 4 — oo and weak fields, cp. Eq. (16), we have
in this case the asymptotic field-free limit ¢ — 09, in agreement with phenomenological
results [34, 35]. On the other hand, the field-free limit in (37) agrees with the result obtained
in [8] in the field-free case. ,
Let us note that the formula (35) can be simplified if x4 > 1 (small field and large
domain width, i.e., large crystal thickness Ls; cp. [30-33]), as in this case Eq. (16) implies
k < 1. This permits to use in (35) the asymptotic formula (cp. [29 D

cnt = sech ¢ (38)

which leads to the simpler expression
0 = 2Q,L,x; " tanh (ko4 sin 9) sin 9. (39)
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8. Numerical calculations and comparison with experiment

As the only experimental data which can be reasonably compared with our results
are the magnetization curves measured for single-crystalline Co in [17], we confine our-
selves in the present paper to examining numerically the formula (25) for the magnetization
and defer the numerical analysis of the remaining quantities to a separate paper [36].
We shall compare our numerical magnetization curve with that obtained in [17] for the
layer-like (and complex, cp. [32]) Goodenough-type domain structure in the case when the
transversal magnetizing field was perpendicular to the domain layers (i.e., parallel to the
“creating” field Hy used in producing the structure; cp. [16]). Actually, two such cases
have been examined in [17], in which the magnetizing (and the creatlng) field was parallel
either to the crytallographic direction [0110] or [2110] (Figs 3a and 6a in [17], respecti-
vely). Our calculations do not take into account the slight anisotropy of the hexagonal
lattice within the basal crystal plane (0001) (cp. [8 D but, fortunately, the respective
magnetization curves in [17] do not differ significantly either, although there are subtle
differences in the corresponding domain structures (cp. [16, 32)).

It should be noted, however, that, even for small field strengths, the above mentioned
experimental magnetization curves cannot be expected to agree quantitatively with our
theoretical results. For one thing: the initial magnetization curves in [17] have been
found to depend on the sign of the magnetizing field (reversal of field direction),-a rather
perplexing (and apparently substructural) -effect which - is neither experimentally nor
theoretically explained, except that it must be attributable to the specific process in which
those (remanent) domain structures are obtained. On the other hand, the 180° Bloch
walls of the complex Goodenough structure studied in [17] are extremely wavy at the basal
crystal surfaces and, in addition, there is a highly complicated array of spike-like closure
domains at these crystal surfaces (cp. [37]). Neither of these modifications is included in
our simple domain structure model, as either one is mathematically hard to handle even
in the phenomenological approach (cp. [31]). Finally, a rather important factor in aiming
at quantitative agreement with experimental data is the sample’s demagnetizing energy
(cp. [31, 35]) which has been neglected in our theory. In view of these shortcomings of
the present theory it is a pity that the measurements of [17] have not yet been repeated
on thin Co single crystals (Ls < 50 pm), as in this case the complex Goodenough domain
structure is known to pass gradually into the simple plate-like Kittel-type structure assumed
in this paper (cp. [31, 32]). None the less, it appears that our results are at least for small
field strengths in qualitative agreement with the correspondmg experimental curves gi-
ven in [17]. >

In carrying out the numerical calculatlons, we shall express the microscopic constants
involved in Eq. (25) through the more accurate macroscopic constants 4 (exchange cons-
tant), K (first anisotropy constant) and I, which, according to [35]: have for Co the-follow-
ing values (at room temperature):

A4 =13-10"°erg/em, K; = 4.3 - 10° erg/cm?, I, = 1422 Gs. (40)

The relationship between these constants can be established quite easily, by comparing
Eq. (10) with the respective functional for uniaxial ferromagpets following from the
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phenomenological theory (cp. [2, 3, 35]). It reads
Q= A~V0) 11 = KIVO:v Kg = 71/9 . KI/A9

and leads with the values (40) to

Ko = 1.8°10°cm™, o = 1.7:10~%# Gs cm3ferg. = (42)

For the domain width we take the value 4 = 10~2 cm from [17], in which case ko4 > 10*
and, according to a numerical analysis of Eqs (16) and (23), the modulus k is over a wide
field range very close to 1 as, e.g., k2 = 1—k? < 10-° for fields up to 6000 Oe. This
permits to use the expansion [28, 29]

K(k) = In (43" +(1/2)* In (dkg ' = 1) +... (43)

for the complete elliptic integral of the first kind, which considerably simplifies the cal-
culations. -

The result of our numerical analysis, based on Egs (16), (23), and (25), is shown in
Figs 6 and 7 (bold curves). In Fig. 6 the dashed curves represent experimental results
(cp. Fig. 3ain [17]). It is seen that the theoretical curve agrees qualitatively only with the

/ .

120 /

I[Gs] —»

200 400 600

H[Oe] ———»

Fig. 6. Comparison of the weak-field theoretical magnetization curve (bold line) with the experimental
curves (dashed lines) obtained for Co in [17] (Fig. 3a)
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upper experimental curve (opposite directions of the magnetizing and creating field), and
even then only in the weak-field region (up to 200 Oe). It is rather obvious that the main
reason of this poor agreement is, above all, the neglect of the sample’s demagnetizing
field in our considerations, as this field ‘actually lessens the strength of the external
field inside the sample and thus impedes substantially the magnetization process.

“As regards the field-induced ferro-paramagnetic phase transition shown to exist in
uniaxial single-domain ferromagnets in a transversal magnetic field [19-26], it is seen to
be cancelled by the domain structure, as the susceptibility (28) is a continuous function

Ia [ —— . et | —— —  c— —— —
—t—
1
12 //
|
8 1

I0i0°6s] — =

\

7 2 3 - 4 5) 6 He 7

HC10° 0 ] ———

Fig. 7. Theoretical magnetization curve (25) for Co. (Note the “ferro-paramagnetic” pseudo-phase transi-
tion at the pseudo-critical field strength #.)

of the field strength. The only trace of it is the “pseudo-phase-transition” clearly visible
in Fig. 7 and taking place at the “pseudo-critical field” strength #, of about 6200 Oe,
at which the magnetization attains practically saturation. Note that I, ~ 2K; =
= 8.6:10° erg/cm® for Co, i.e., #, corresponds to w ~ 1. Bellow this field strength
the susceptibility is practically constant, while above it it is effectively zero, i.e., like in
the limit cases (29). It is very unlikely that the inclusion of the demagnetizing energy into
the theory will alter this result — except for shifting upwards the pseudo-critical field
strength and perhaps smearing out the pseudo-phase-transition itself. This conclusion
is corroborated by experimental investigations (cp. [27, 35, 38]) in which, unfortunately,
little attention has been paid to the domain structure itself.

There is, however, a chance that the phase transition does exist even in the presence
of the domain structure if the transversal magnetic field is parallel to the Bloch walls,
as in this case the Euler-Lagrange equation has two different periodic solutions confined
to two non-overlapping field intervals [3, 5]. The solutions are continuous at the dividing
point, but the magnetization and susceptibility have not yet been studied and the latter
may well be discontinuous. Such investigations are under way and the results shall be
published in a subsequent paper [39]. The so-called threshold fields arrived at in [14]
while examining this case in the molecular-field approximation might also indicate the
existence of a phase transition.
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Finally, it should be emphasized that the magnetization (25) (as well as the remaining
quantities (28), (31) and (35)) depends on the domain width 4, i.e., on the crystal thickness
L; in the magnetically preferred direction [0001] (cp. [31-33]). The numerical analysis
of this dependence will be carried through in a separate paper [39]. However, it would
be very interesting to study this problem also experimentally, by extending the measure-
ments of [17] to the series of single-crystalline Co samples examined. in [32]. It is quite
possible that 4 (i.e., L) may affect the value of #, and hence the slope of the magneti-
zation curve below ..

REFERENCES

[1] C. Kittel, Rev. Mod. Phys., 21, 541 (1949); C. Kittel, J. Galt, Solid State Phys., 3, 437 (1956).
[2] M. J. Shirobokov Zh. Eksper. Teor. Fiz., 15, 57 (1945).
[3]1 M. J. Shirobokov, Dokl. Akad. Nauk. SSSR, 24, 426 (1939).
[4]1 W. J. Zigtek, Acta Phys. Polon., Suppl, 22, 127 (1962).
[51 W. J. Zietek, Acta Phys. Polon., 23, 363 (1963).
[6]1 W. J. Zietek, Acta Phys. Polon., 21, 175 (1962).
[71 W. 1. Zigtek, Phys. Status Solidi, 8, 65 (1965). :
[8] J. Klamut, W. J. Zietek, Proc. Phys. Soc., 82, 264 (1963). °
[9]1 J. Klamut, Acta Phys. Polon., 25, 711 (1964), 30, 65 (1966)
[10] W. Wasilewski, Acta Phys. Polon., 30, 577 (1966).
[11] H. Pfeiffer, J. Ulner, Acta Phys. Polon., A39, 703 (1971).
[12] J. Klamut, Acta Phys. Polon., 31, 555 (1967).
[13] J. Klamut, W. Wasilewski, Acta Phys. Polon., 33, 147 (1968). _ B
[14]1 J. Klamut, Acta Phys. Polon., A38, 873, (1970); A39, 273 (1971).
[15] J. Kowalski, Acta Phys. Polon., 32, 309 (1967).
[161 B. Wystocki, Acta Phys. Polon., 217, 783, 955 (1965).
[17]1 B. Wystocki, Acta Phys. Polon., 27, 969 (1965). -
[18] A. Wachniewski, Acta Phys. Polon.; 33, 923 (1968).
[19] P. Wojtowicz, M. Rayl, Phys. Rev. Letters, 20, 1489 (1968).
[20] E. Riedel, F. Wegner, Z. Phys., 225, 195 (1969).
[21] H. Thomas, Phys. Rev., 187, 630 (1969).
[22] K. Durczewski, Acta Phys. Polon., A38, 855 (1970).
[231 J. Sznajd, Phys. Status Solidi, 41, 405 (1970).
[24] H. Pfeiffer, Acta Phys. Polon., A39, 213 (1971)
[25] G. Kozlowski, L. Biegata, S. Krzemifiski, Acta Phys. Polon., A39, 417 (1971).
[26] J. Ulner, Acta Phys. Polon., A40, 725 (1971).
[27] H. Suzuki, T. Watanabe, J. Phys. Soc. Japan, 30, 367 (1971).
[28] F. Oberhettinger, W. Magnus, Anwendung der elliptischen Funktion in Physik und Technik,
Springer-Verlag, Berlin—Heidelberg—New York 1949.
[29] I. S. Gradshtayn, I. M. Ryzhik, Tables of integrals, sums, series and products, 5-th edition, Science
Publ. House, Moscow 1971 (in Russian).
[30] J. Ulner, W.J. Zietek, Acta Phys. Polon., 35, 127 (1969); K. Durczewski, W. J. Zigtek, Acta
Phys. Polon., 35, 307 (1969) )
[311 G. Koztowski, W. J. Zietek, Acta Phys. Polon., 29, 261, (1966); A42, 87 (1972).
[32] B. Wystocki, Acta Phys. Polon., 34, 327 (1968); 35, 179 (1969); B. Wystocki, W. J. Zigtek, Phys.
Letters, 29A, 114 (1969).
[33] S. Szymura, B. Wystocki, W. J. Zietek, Acta Phys. Polon., A38, 405 (1970).
[34] B. A. Lilley, Phil. Mag., 41, 792 (1950).



221

{35] A. Seeger (editor), Chemische Bindung in Kristallen und Ferromagnetismus, Springer-Verlag, Berlin—
New York 1966.

{36] W. Wasilewski, Acta Phys. Polon., A42 (1972) — in the press.

{371 B. Wystocki, Phys. Status Solidi, 3, 1333 (1963); Ann. Phys.  (Germany), 13, 109 (1964);
B. Wystocki, W. J. Zigtek, Acta Phys. Polon., 29, 223 (1966).

381 S: Kaya, Sci. Rep. Tohoku Univ., 17, 639, 1157, 1165 (1928); C. Guillaud, J. Phys. Radium, 12, 492
(1951); W. Sucksmith, J. E. Thompson, Proc. Roy. Soc., A225, 362 (1954).

[39] W. Wasilewski, W. J. Zietek — to be published.



