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Three new perturbation procedures for the calculation of the exchange forces between
atoms or molecules are proposed and tested in the case of the ground and the first excited
states of the hydrogen molecule. All these procedures have the Rayleigh-Schrodinger framework
and are based on the method which has been described in a previous paper [1]. For comparison,
numerical calculations have also been performed by using the Hirschfelder-Silbey (HS),
Murrel-Shaw-Musher-Amos (MS-MA) and Hirschfelder-van der Avoird (HAV) procedures.
All interaction energies through the second order, with the exception of the HAV result,
are similar and coincide very well with the variational energy obtained with the same basis
set. Some of the new formalisms give a much better Coulomb energy than the methods used
until now. ’

1. Introduction

In Part I a Rayleigh-Schrodinger type perturbation method has been developed
(hereafter called method I) for calculation of the interaction energies between molecules
in the region of small overlap [1]. The method takes into account the symmetry require-
ments for the unperturbed wave function, which has been taken as

Yo = Nodgo, (1)

where the operator 4 projects on the space of functions having symmetry properties of
the state under consideration and N, is a normalization constant. The ¢, function can be
any arbitrary function subject to some general requirements specified in Part 1. In particular,
@, can be chosen as a simple product of the exact wave functions of both interacting
molecules. ‘

* This work was partly supported by the Polish- Academy of Sciences within the project 06.1.1.
** Address: Instytut Podstawowych Probleméw  Chemii, Uniwersytet Warszawski, Warszawa,
Pasteura 1, Poland.
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Using two projectors

Q = [yo> {Yol @
~and
S=4-0 3)
the total Hamiltonian H or more exectly its part in A% space (9 denotes the total Hilbert
space) hag been divided into four parts

AH = QHQ+SHS+SHQ+ QHS. 4

‘The operators SHQ and QHS vanish at infinite intermolecular distance R and can be
included into the perturbation. In order to assure the Rayleigh-Schrodinger framework
of the theory, it has been necessary to split the SHS term into two hermitean parts: the
“small” one vanishing for R — oo and the “large” one remaining finite at infinite inter-
molecular separation. This has been done by using the operator T' [1]:

T - ‘ki 5 ¥l ®)

where ¥, form an orthonormal basis in the S space and functions @, defined exactly
dn [1], satisfy the relation

Wk = A¢k’ (6)

In order to understand more deeply the characteristic features of the theory of exchange
interactions let us turn to group theory.

If one introduces group algebras [2] 4G, AG, and AG, corresponding to G, G,

and Gy = GNG, groups, respectively, the symmetry properties of the operators H and
H, can be included in the following commutation relations:

[g, Hi]=0 for g €AG,
[ H]1=0 for g edG )
[g, Hi]#0 for g eAG and g ¢ AG,.

Since the operators H, Hy and V' = H— H, contain the co-ordinates of the nuclei of both
‘molecules, they depend parametrically on 4 = 1/R and one can write

H(Q) = Ho()+V(2). " ®

Using the explicit form of V(1) one can easily show that this operator is “smal > on all
finite-dimensional stable subspaces of the operator Ho(A), ie.

lim V(A)e(l) = 0, &)

A-0

‘where ¢(4) is the finite sum of eigenvectors of Hy(4). Generally, however, commutation
relations (7) make fulfilment of equation (9) impossible in the whole Hilbert space $.
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Actually, if g; and g, does not belong to AG, and if @,(4) are eingenvectors of Hy(4)
then:

Elf(l) 19DV (D)|g29)) = }Iin;K g1odDIgV (D) (D) +
+<g:17(%) | [g2, Hol l(A))] = am'(l) 0] [gi[g_z, Ho] [g(A)> # 0 (10)

because [g,, Hy]# 0.
Therefore, since V(4) * (Yexact — Po) must not be neglected in the derivation of the

first order perturbational equation, the operator V(1) cannot be used as a perturbation
in the usual perturbational procedure. The perturbation operator?” of Part I (as well as
those %", which will be introduced below) is small in a much stronger sense than (%),
namely
lim 7 (A)gg = 0 ‘ (11)
A0 B

for any arbitrary element g of the group algebra AG.

2. Intramolecular and intermolecular symmetry operations

Let us consider two molecules @ and b with » and m electrons respectively and with
fixed configurations of nuclei within each molecule. Let the molecules be shifted along an
axis without rotations and without changes of intramolecular geometry. Thus, the configura-
tion of the nuclei can be uniquely determined by the intermolecular distance R, which
might be for instance the separation-between arbitrarily chosen atoms of both molecules.

- The total wave function  of the interacting molecules belongs to an irreducible re-
presentation of the symmetry group G of the system. This group is the direct product of
the point group & and the permutation group &y of all N =n+m electrons of both
molecules i. e. G = FRFLy

We assume that & consists of only those operations F, which exist at all values of R.
If there exist such F which exchange the nuclei of the molecule a with those of the molecule
b, then the interaction will be called homomolecular otherwise heteromolecular. If addi-
tionally in a homomolecular case n equals m, then the interaction will be called isoelec-
tronic.

The irreducible representation (corresponding to the state under consideration) of G
is the direct product of a proper irreducible representation of &% characterized by the
projector C and the irreducible representation of &y connected with the projector (anti-

symmetrizer) A
/
C=— F™YHF 12
¥ g HE™ (12)

FeF

Ll Z (—1)°P 13)
NI ’

PeSyN
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where [ and |#| denote the.dimension of the proper irreducible representation and the
order of the group &, respectively, y denotes characters of this irreducible representation
nad P the permutation operations of electrons of both molecules.

The general projection operator A associated with a given 1rredu01ble representation
of a whole symmetry group of the system can be written as a product

A = BCA, (14)

where the additional projector B assures that, for an arbitrary @, A9 is an eigenfunction
of the square of the total spin. The operator B can be constructed, for instance, using the
Loéwdin projectors [3].

Let us take now the group ¥, = &,®%,,, which consists of all permutations which
do not exchange electrons between molecules. The set of all P € &y —, will be denoted.
by & . In the case when both interacting molecules are isoelectronic, there exists'a non-
-empty set &;CFex of such P which exchange all electrons of the molecule a with all
electrons of the molecule b.

The &, set can be rigorously defined by

Ly = Pabﬁ70s @15y
where
&P = (1, n+1) (2, n+2)...(n ,2n). (16):
The antisymmetrizer can be separated into two parts

A=A, +4_, 17y

where
1 N ‘ .
A+-=MZ(—-1)P (18y
Pe %o
A_ = 1 -1)FP 19
- = ]7' (“ ) . ( )
Pe Pex

One can easily see that if 4, and 4, denote the antisymmetrizers of electrons 1 ... n
and n+1, ... n+m, respectively, then '
nlm!
A+ = —]—V—!—AaAb . (20)‘
Let us denote by &, the subgroup of &, which includes those F €Z, which do not
exchange any atoms between molecules. Let the set & —%, be denoted by F,, If F
is not an empty set, then the interaction is homomolecular otherwise it is heteromolecular.
Now, it is possible to write

Cl=rGC @1y
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where
l
C, = — F~YF 22
= Y @)
Fe%o
and
: Z (FHF 23)
= — X :
|F |
FeFex
The projector 4 of Equation (14) can be written as
I .
A=BCA=B—— —-DFP F*O)F =A,+A_ 24
sig ) D Zx( F = 4, @4
PeSN FeZF .
where
p .
A, =——B —1)Py(F~Y)PF, 25
= NIF Z< NPT (25)
PFeGy
A_ = BELES B (—l)Px(F"l)}"F. (26)
T N!|ZF|
GaPF~eGy

Since G, is the subgroup of G, and G, then from Equation (25) it follows that A’fF = Ay
Let us investigate A4 in greater. detail

)
BLY X (—l)fx(F")PF+

N'Igl PeSPo FeFo

+ Y Y (=DPyF HPF] =B(C+A++C_,Aab) @7

PePap FeFey

+

where

1
Ay = NI Z (-fl)PP = (=1)Pud. . 28)
'Peyab ‘

Since_in the non-isoelectronic homomolecular interaction & is an empty set and in the
heteromolecular interaction &, is an empty set, then -

’ .
BC.A +C_A) = BOD (Cot(~17C_PAA,

A+ = |BC, A, (29)
BCA,

BLC_ A, (1+(=1)"*'P,)+CA_].
A_ = IB(C_A4,+CA4.) (30)
BCA _ ) :
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The first row of Equations (29) and (30) refers to homomolecular isoelectronic inter-
actions, the second one — to homomolecular non-isoelectronic interactions and the third
one — to heteromolecular interactions. :

The operators A, and A- will be used in the next section for the construction of
perturbational procedures of the Rayleigh-Schrédinger type.

3. Method IIT

The splitting of the SHS term of Equation (4) performed in Part I is by no means
the only one possible. Using Equation (24) one can divide SHS into three. parts

 SHS = T'HoA, T+TVA, T+T'HA_T = (31

The Equation (31) can be easily verified by means of the relations AT = S, St = § and
Equation (8).
Now, AH in the Schrodinger equation_

AHy = Ey (32)
can be separated into
AH = H o+, (33)
where |
Ho = E;Q+ TTH,A,. T 34
¥ = AEg Q+SHQ+QHS+TYWA, T+THA_T (35)
and
AEy, = {yolH—Eo|poy. (36)
Note that since TQ = 0 (see [1]), v, is an eigenfunction of 7,
H oo = Eovy . (37

If the Heitler-London function is chosen as g, then AEy;, is the Heitler-London correc-
tion to the energy. The 5, unperturbed operator is self-adjoint since Hyd. = A+Hy and
A% = 4. Since additionally #, commutes with 4, one can use the familiar Rayleigh-
-Schrodinger perturbation theory. The first order correction to the energy E*) equals 4 Ey;y.,
because y, = Qy, and @S = TQ = 0. Note that the perturbation at sufficiently large
distances R is certainly small, because QHS and SHQ operators are small [1] and all
matrix elements of the T'VA.T and TTHA_T operators vanish for R — co.

To calculate the first order correction to the wave function, ¥, the following func-
tional should be minimized

E® = (Tp"|Hod . — EoS|TpM) +

+ N9 Vo> + Nol ol V191, (3%)
where the trial function 9 e S9.
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To minimize the expression (38) one can expand 9 in a finite series of M functions
¥, and use the Ritz variational method. Owing to the 4. operator, the calculations through.
the second order need a very small number of multicenter integrals (with centers belonging
to both molecules). The number of exchange integrals which are the most time consuming
is proportional to M since they appear in the last two terms of Equation (38). This may be
compared with the numerical effort of variational calculations with the number of ex-
change integrals proportional to M?2.

The second order energy can be evaluated from

E® = (D1 o) = Ny D[V o). (39

The present method is very similar to the matrix perturbational method of Pecul [4].
However, the matrix elements of the #, operator and the elements of the U matrix in
Pecul’s method differ slightly, because Pecul used asymptotic values of normalization
constants in the basis functions . ¥;. As his zeroth order energy Pecul used E,+AFEy;.
This difference is not an essential one, because the AEy; O term can be included in ¥~ as
well as in #,. The last statement is also true for the method I as well as for two other
methods developed below.

‘4. Method III

Let us investigate more thoroughly the operator ¥". The QHS and SHQ terms in ¥~
assure that v, is an eigenfunction of the 5, operator. If one calculates the energy using
the method II through the second order, then the last two terms in ¥"y; vanish since
TQ = QT = 0.

Nevertheless, these terms do affect indirectly the second order energy, since they
determine #, through Equation (33). If the last two terms in ¥~ were included into J%,,
then the second order calculation would require all the same integrals as the variational
method and therefore would be impractical.

However, most of the time-consuming intermolecular exchange integrals are generated
by the TT HA- T term. These integrals vanish exponentially as R tends to infinity in contrast
to the integrals generated by the Tt VAT term, which as a rule behave like R,

Thus, one can see that for sufficiently large distances the TTHA-T operator should
be smaller than TTVA; T. If one shifts the T'V AT term to #,, then one can expect
the perturbation to become significantly smaller and the perturbation series to converge,
faster. So, one obtains

Ho = EQ+T'HA,T (40)
¥ = AEq;Q+SHQ+QHS+T'HA_T. (€h))

It can be easily seen, that similarly as in the case of the method II, the operator 5, satis-
fies the relations

HE = o, 42)

[#0, 4] =0 " @3)

H oo = Eoyp . (44)
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The operators #, and ¥~ obtained in the above way can be used in the Rayleigh-
-Schrodinger perturbation procedure as the unperturbed operator and the perturbation
respectively. The functional to be minimized in the second order calculation could be ob-
tained by replacing #, by H in Equation (38). I

The method III is numerically more complicated than the method I and II, because
of a great number of Coulomb integrals, which should be evaluated. However, one can
expect, that especially for larger distances this method should give better second order
energy than other methods do.

5. Method IV
The last term of Equation (41) can be separated in the following way

THHA_T = L T[(H-U)A_+A_(H-U,)]T+

+ % TYU,A_+A_UT, 45)
where
n n+m
|
Up = Z —. (46)
rij
i=1 j=n+1

Now, shifting to #, the first term of the right-hand side of Equation (45) one obtains
a new partition of the AH operator:

Ho=EQ+THA, T+ 5 T(H-Uy)A_+A_(H-Uy)1T 47)
¥ = AEqQ+SHQ+QHS+ $ T'(UypA_+A_U,)T. (48)

One can easily see that Equations (42)—(44) remain true. The new #, and ¥~ operators
can be used in the usual way to construct the perturbational scheme. The first order correc-
tion to the wave function should minimize the following functional

BE® = (TH V| HA- } (UnA- +A4-Uy)—EoSITHpM>+

+NKHOIY [90>+NoCpol VIHDY. N

Due to the fact, that the $7+(UA—+ 4-U,)T term is included in the perturbation 77,
the calculations of E® need only a small part (the same as in the previously descibed
methods) of the intermolecular exchange integrals appearing in the variational method.

6. Numerical example

One may ask the following questions: (i) which one of the new formalisms gives the
best interaction (Ejy), exchange (Feyen) and Coulomb (Ecey) energies through the second
order, (ii) are the above quantities better or not than those predicted by methods used
until now. The authors try to give a partial answer to these questions by calculating E®,
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E..., and Ec,,, for the two lowest states (X 13} and b3%;) of the hydrogen molecule using
a limited basis set in the S§) space (hereafter all quantities calculated using a finite basis
set will be indicated by a bar).

The hydrogen molecule has been chosen to assure relative simplicity of calculations.
and also because in this case numerous accurate calculations have been performed by the
variational as well as perturbational methods.

In the present paper the authors use the methods:

I — developed in Part I.

II, III, IV — described in the present paper.

HS — the method given by Hirschfelder and Silbey [5].

HAV — the method of Hirschfelder and van der Avoird [6].
MS-MA — the method given by Muscher, Amos, Murrell and Shaw [7].

The present authors have used also another version of the methods I-IV with the
zeroth order energy equal to E;+AEy,, instead of E,. This can be done by shifting the
AEy O term from ¥ to )y in each of our methods. For R = 8 a. u. the results of this
alternative version differ only slightly from the corresponding dne_s of the original ver-
sions; for larger R both sets of results are identical.

Recently Pecul [4] has carried out perturbational calculations for the hydrogen
molecule using his own method (hereafter denoted by P) as well as the variational approach
with the same basis set for R = 8, 10 and 12 a. u. Since the comparison of the perturba-
tional results with the best possible ones in the same basis set (variational) is of special
interest, we decided to carry out our perturbational calculations for the same intermolec-
ular distances and the same basis sets.

The ¢ in the S9 space has been expanded in terms of the ¥, functions of Equation
(6). The ¥, functions have been constructed as in Part I from the Slater type orbitals
(with all orbital exponents equal 1). For R = 8 and 10 a. u. the eleven term expansion
has been used consisting of configurations: 2p 2p, 2p 3p, 2p 3d, 2p 4f, 3d 3d and for
R = 12 a. u. the nine term expansion with the same configurations but with only 3d, 3d,
function from the 3d 3d type configurations.

In Tables I and II the second order corrections to the energy (E‘®) are given for the
ground and the first excited states respectively together with E,,, — (&, +4Eg). The symbol
E,,. denotes the variational energy calculated with the same basis set as the perturbational
quantities. The AEy; values and values defined by

Z - (EO +AEHL +E(2)) _Evar
Evar—'EO _AEHL

(50)

are also given.

It can be easily proved using the matrix formulation of the perturbational method,
that for the Rayleigh-Schrodinger perturbational procedures

_ E®+E® 4
A= - ——G— (51)
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‘TABLE 1
Comparison of the second order corrections to the energy (E) with Ej,—(E,+4EfyL) for the ground
state (XIZ";r ) of the hydrogen molecule. In the last row the Heitler-London corrections to the energy
AEjL are listed. Energies in cm™, R in a.u., 4, = [(Ey+AEfL+E?)—Efar] - (Byar—Eo—AEfyL)

E® 4, in percent

Method X 8 10 12 8 10 12
1 —17.423 —1.742 —0.5433 +14 +0.13 —0.066
II —17.304 —1.735 —0.5430 —0.23 —0.26 —0.12
P —17.306 —1.736 —0,5430 —0.21 —0.24 —0.10
I —17.239 —1.734 —0.5434 —1.1 —0.33 —0.042
v —17.516 —1.746 —0.5438 +27 +0.36 +0.031
HS —17.472 —1.743 —0.5432 +2.1 +0.15 —0.072
MS-MA —17.471 —1.743 —0.5432 +2.1 +0.15 —0.072
HAV —3.873 —0.876 —0.2718 —47.1 —49.6 —350.0
variational —17.321 —1.740 —0.5436 — — -
AEfy, —3.817 -1.130-10-* | -3.051-103 — — —

TABLE 1T
Comparison of the second order corrections to the energy (E{2)) compared with Eyey—(Ey+4EfyL) for the
first excited state (b3Z]) of the hydrogen molecule. In the last row the Heitler-London corrections to the
energy AEjy are listed. Energiesincm™, R ina.u., 4, = [(Ey+4EfL+E®)—Eva] - (Byar—Eg—AEf)™

E® 4, in percent
Method N\ 8 10 12 8 10 12
I —17.041 —1.724 —0.5426 +0.44 +0.019 —0.074
I —17.180 —1.731 —0.5429 +2.4 +0.42 —0.027
P —7.174 —1.731 —0.5429 +2.3 +0.40 —0.029
III —7.110 —1.730 —0.5433 +1.4 +0.34 +0.043
Iv —6.820 —1.718 —0.5429 —2.7 —0.36 —0.030
HS —6.983 —1.724 —0.5427 —0.39 —0.007 —0.069
MS-MA —6.983 —1.724 —0.5427 —0.39 —0.007 —0.069
HAV —3.384 —0.857 —0.2712 —51.7 —50.3 —50.1
variational —17.010 —1.724 —0.5430 — - _
AEhL +3.032  |+9.185:1072 |+2.516:10-3 - - el
The exchange and Coulomb energies are defined by

Eexch = _;' (E?nt_Efnt) (52)

ECoul = %(E;nt'l-Eitnt): ; (53)
where

AE} +E® for perturbational methods

Efw =1 _ (54)
E,.—E, for the variational method

and v = s or v = ¢ for the singlet and triplet states respectively.
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The exchange and Coulomb energies are collected in Tables III and IV respectively.
The relative deviations of the.exchange and Coulomb energies calculated perturbationally

(EE.y and EZ,,) from the variational ones (Egsy, and Efey)) are denoted by A, and 4,
respectively

exch = (Eexch EZ;;h)/—E_g(;h ' . (55)
A; = (Elouw—E&u) Edau: (56)

They are also given in Tables III and IV.

7. Discussion

One can see from the Tables I-IV that the results of various perturbational methods
are close to the variational values. The only exception is the HAV method, which gives
very poor interaction and Coulomb energies. The values of 4, 4, and 4, for this method
tend to 509 as R increases. It agrees with the previous observations [8], that the second
order corrections to the energy in the HAV method approach 50 % of the dispersion enérgy.

It is very well known, that the HAV method is able to give good interaction energy,
when the third order correction E® is taken into consideration [9]. However, in our
opinion a perturbational method is of any practical value, only if it gives satisfactory
results already in the second order calculations. Only in this case it requires much less
computational effort than the usual variational method.

One can also see that for R = 8, 10, 12 a. u. the results of the HS method are very
close to those of the MS-MA method and similarly the method P gives results close to
those of the method II (although in the last case the discrepancies are greater). The coincid-
ence of the HS and MS-MA results for R = 8 is known from the literature [81.

It follows from Tables I and II that no method gives the best interaction energies for
all values of R and for both states under consideration. For R = 8 and 10 a. u. the best
methods are: I, 1L, III for the singlet and HS, MS-MA and 1 for the triplet states.

One can expect that III and IV methods should be better than others at large inter-
molecular distances since the corresponding perturbation operators consists of - fewer-
terms vanishing as R™" It has been found that for both states under consideration the
method IV is relatively poor at R = 8 and 10 a. u. but it is the best one at R = 12 a. u.
The method III is fairly good in comparison to other methods for R = 8 and 10 a. u.
(for both states), but is very good for R = 12 a. u.

As one can see from the Table III, the method I gives the best exchange energy except
at R = 12 a. u., where it gives a slightly worse result than the HS, HAV and MS-MA
‘methods. All three last methods give the same values of the exchange energy for R = 8,
10 12 a. u. The methods Il and IV give the worst results of the exchange energy, even at

= 12 a. u., where thése methods give the best interaction energy. '

It appears from the Table IV that the methods III and IV give a definitly better Cou-
lomb energy than any other method. The difference between these methods occurs only
at R = 8 a. u., where the method IV is the best one. All other methods (except the HAV
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TABLE II1

The perturbational exchange energies compared to the variational ones*. Energies in cm~!, R in a.u.,

- _ (TP =var | zvar
Aexch = (Eexch _Eexch)/Eexch

Eoxen Aexcn in percent

Method \ F 8 0 | n 8 10 12
I —3.616 —1.114-10-* | —3.11-1073 +0.98 +0.91 +0.65
II —3.487 —1.046-10-' | —2.86-10°3 —2.6 —53 —8.1
P —3.491 —1.048-10-1 | —2.87-10°3 —2.5 —5.1 —8.4
IIT —3.489 —1.046-10~* | —2.86-103 —2.5 —5.3 —8.1
v —3.773 —1.167-10-* | —3.26:103 +5.4 +5.7 +5.5
HS —3.669 —1.118.10-* | —3.08:1073: +2.5 +1.3 —0.32
MS-MA - —3.669 —1.118-10-'| —3.08-10-3 +2.5 +1.3 —0.32
HAV —3.670 —1.118-10-* | —3.08-10~2 +2.5 +1.3 —0.32
variational "—3.581 —1.104-10-t | —3.09-10~3 — — —

i EZiih and EXp, label respectively the exchange energies calculated variationally and perturbatio-

nally "through the second order

TABLE 1V
The perturbational Coulomb energies compared to the variational ones*. Energies in cm™, R in a.u.,,
a e (E_goul—E\éa;ul)/E\éaorul

Ecoul 4, in percent
Method\\R 8 10 12 8 10 12
1 —17.6251 —1.7439 —0.54322 +0.88 +0.075 —0.070
I —7.6352 —1.7440 —0.54322 +1.0 +0.080 —0.070
P —17.6330 —1.7439 —0.54322 +0.99 +0.075 —0.070
I —17.5676 —1.7427 —0.54361 +0.12 +0.0057 +0.0018
v —17.5610 —1.7427 —0.54361 +0.034 +0.0057 +0.0018
HS —17.6200 —1.7438 —0.54322 +0.81 +0.069 —0.070
MS-MA —17.6198 —1.7438 —0.54322 +0.81 +0.069 —0.070
HAV —4.0215 —0.8773 —0.27175 —46.8 —49.7 —50.0
variational —7.5584 | —1.7426 | —0.54360 — et =k

* Flou and EZ, 1 label respectively the Coulomb energies calculated variationally and perturbational-
ly through the second order

method) give the Coulomb energies also close to each other, but poorer than the values
predicted by the methods III and IV. This manifests itself especially at R = 12a. u.,
where the methods III and IV give the Coulomb energy identical and equal to —0.54361 cm™2,
all other methods give the same value —0.54322 cm~?, while the variational Coulomb
energy is —0.54360 cm~1. The success of the methods III and IV in the Coulomb energy
calculation is connected with the presence of the major part of the Coulomb (R™%) terms’
in the #, operator.
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It is difficult to extrapoiate to other molecules the main features of the methods
investigated above. It seems, that the conclusions arising from the examination of the
exchange and Coulomb energies should be more transferable than those concerning the
interaction energies. In the first two cases one calculates the quantities having a quite differ-
ent funetional dependence on R. In the interaction energies the Coulomb and the exchange
effects. are mixed. If the above supposition is correct, then it seems, that the exchange
energy should be calculated by the method I and the Coulomb energy by the methods IIT
or IV.

However, the last two methods require more computational effort than the remaining
ones. For larger interacting systems this difficulty may be overcome by using approxima-
tions for calculation of integrals. It seems that in perturbational approaches, in the small
overlap region, such a possibility exists and the Mulliken approximation may turn out to
be an effective one [10]. One can expect, that the Mulliken or more sophisticated approx-
imations, such as those of Lowdin [11] and Cizek [12], should permit applications of the
perturbational methods to systems of practical interest.

The authors wish to express their gratitude to Professor W. Kotos for his kind interest
and helpful discussions and to Dr K. Pecul for supplying them with numerical values
of integrals used in the present paper.
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