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PERTURBATION THEORY OF INTERMOLECULAR FORCES
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A new perturbational method for the calculation of the interaction between molecules
is presented. The method takes into account the proper symmetry requirements for the
zero-order wave function, which can be of the Heitler-London type or any better function.
Preliminary calculations of the second order energy correction for the ground and the first
excited state of the hydrogen molecule show that this method gives reliable results.

1. Introduction

In the usual perturbational calculations of the interaction energy between atoms or
molecules one assumes that the zero-order wave function ¢, is a simple product of the
accurate functions of the individual atoms or molecules (polarization approximation).
The ¢, function satisfies

Hopo = Eop, , ®
where
_ Po = Y696 ©)
and
Hy, = Hy+Hj. 3)

The functions ¢§ and ¢b are the eigenfunctions of atomic (molecular) Hamiltonians
H§ and H? respectively.

However, the accurate wavefunction of the total system should belong to the irre-
ducible representation, say I';, of the symmetry group of the total Hamiltonian. The simple
product function given by Equation (2) does not belong to the I'; symmetry mode.
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At very large internuclear distances the polarization approximation gives satisfactory
results [1]. At smaller distances the proper symmetry of the zero-order wave function must
be assured. The symmetry requirements become important in the region where both inter-
acting molecules overlap significantly. As the overlap criterion one can use the value of
the integral:

S% = L @e@h Pyl 0s by = [f yalx, x')(x, x)dxdx’, @)

where y,(x, x') is the first order density matrix for atom c and Py, denotes the permutation
operator which exchanges the co-ordinates of electron 1 from the molecule a and those
of electron 2 belonging to the molecule 5. The magnitude S? seems to be a reasonable
extension of the overlap intergral idea beyond the orbital approximation.

For further analysis one can construct a set of projectors 4; such, that 4,0 belongs
to the I'; symmetry mode for any function @ from the total Hilbert space 9.

The A; projectors satisfy the familiar relations

AA; = Al ®
4F = 4, ©)
Zi:A,- =1, @)
HA; = AH, ®)
where H is the total Hamiltonian.
The function
1/“f) = No4;9o, €))

‘where N, is a normalization constant, has the proper symmetry. It is easy to see that wh
is not an eigenfunction of the H, operator, hence one cannot apply the standard perturba-
tional procedure. There are several perturbation theories, which try to overcome this
difficulty [2]. However, it has been pointed out by Hirschfelder, that none of these methods
seem to be quite satisfactory and further research in this field is required [3]. In the present
paper a new method is proposed, which is based on the Rayleigh-Schrédinger perturbation
theory.

2. Method

Using Equations (5), (7) and (8) one can write the following chain of equalities [3]

H=H-1=HY A, =Y H4,=Y HA} =
i i i
= zAiHAi = Hl@H2®H3®.... (10)‘

The Hamiltonian H is an orthogonal sum of operators H;, each being H reduced to the
related symmetry mode. When one is interested in the I'; symmetry mode, it is sufficient
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to solve the eigenvalue problem solely for H;. For this reason, henceforth the subscript
i will be omitted.
Let us define the projectors

Q = o> {yol 11)

- and

S=A-0Q. (12)

They obviously satisfy the relations

0*=0; 5 =5, (13)
0s =50 =0, ) (14)
st=s;0"=0 (15)
One can write
AH = QHQ+SHQ+ QHS +SHS. (16)

Let us define a set of normalized functions ¢,
P = PnPm. k=12, .., an

where gy, for ¢ = @ and ¢ = b, form the basis of the Hilbert space of the molecule c.
Let us also define two other sets of functions y; and v,

. Ay
Xk = Pr— A Po . (18)
00 .
and .
Ve =Nedy, k=123, .., 19
where
Ay = L@ldlop, Ny = Quldlgy ™" (20)
One can easily notice that 4
O =0, (1)
S = Axx (22)
and -
Sy = ¥ 23)
The definition (18) assures the orthogonality
{plwod = 0, for k="1,2, .... (24)

Let us orthonormalize the y, functions for k = 1,2, ... to obtain the orthonormal basis
{¥,} in the S space

Ve =Y Ciu¥u (25)
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and

KPP = 6kl' . (26)

Those v functions which in the course of orthonormalization cause finite linear depend-
encies should be rejected together with their “primitive” functions y;. For each function ¥,
one can define an unnormalized function -

D, = %:c,mN wXue (X))
Thus, |
¥, = A, k=1,2,.. (28)
Let us construct the operator
= ; 1Pe> Wil 29
which is very similar to that of Byers Brown [5]. The operator T satisfies
AT = ST =5, | (30)
TA =TS =T, (1)
TQ = QT = 0. (32)
Using the operator T one can divide the term SHS of Equation (16) into two parts
SHS = L (SH,T+T'H,S)+ L (SVT +T'VS), (33)
where E
V = H—H,. (34)

In fact, the Equations (34), (8), (5) and (30) justify the following chain of equalities
L(SH,T+TH,S)+ L (SVT +TtVS) =
= 1 (SHT +T*HS) = % (SHAT + TTAHS) = SHS.

Now, one can divide the operator AH:

AH = # o+, (35)
where
Ho = EgQ+ L (SHoT +T'H,S) - (36)
and AP
¥ = AEQ+SHQ+QHS+ $ (SVT+T'VS) 37N
with

AE = {polHlys>—Eo. (38)
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If ¢, is a product of the exact molecular wave functions ¢j and @5, the terms SHQ
and QHS in Equation (37) become zero when the intermolecular distance R goes to infinity.
Indeed, for arbitrary function @ one has

SHQ® = SHW’O) <7/)0|¢> . <"/’0|¢>NOSHA(P0 =
= (Pol®YNoSV o, (39

The last expression is small because Vg, = 0 as R — co. Exactly the same holds
for the QHS term. The third term of Equation (37) vanishes at infinity, since V¢, goes to
zero at least as R ‘

Note that from Equations (11) and (32) it follows that

%o"/)o‘— Eovo. . (40

It can be also easily verified that the operators Hy and ¥ are self-ad_]omt and commute
with A. Therefore, in solving the eigenvalue problem for the operator AH it is possible to
apply the ordinary Rayleigh-Schrddinger perturbation procedure Treatlng ¥ as a pertur-
bation and introducing the formal parameter A one can expand the eigenfunction y and
the elgenvalue E as a power series

= o+ Ap P+ 129D 4 - 41
E = Eg+AEV+22E® 4 ... “)
It is easy to show from Equations (14) and (32) that )
EW = {yo|¥ o) = 4E. 43)
The second order energy can be calculated from the formula
E® = (D Ipoy = No<p P IWlgod, (44)

where N, is defined in Equation (9).

In order to obtain the first order correction to the wave function, it was practical
to use the well known Hylleraas variational principle [6]. The functional to be minimized
takes in our case the form

E® = 3 (9 VHo—Eo| TyV) + 5 <T9D|Ho— EolpV) +
+ NP1V 19> +No ol VIgHy. - 45)

It was assumed that the trial function () satisfies the proper symmetry requirements
and is orthogonal to w, ie. SPM = P,

It is convenient to expand ¢ in terms of y; functions

N
D= Z a;y;. (46)
i=1

The coefficients @;.can be determined in the usual way from the set of linear algebraical
equations.
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~" From the practical point of view any good perturbation procedure. should give
E® 4+ E® close to the variational result calculated in the same ‘basis set. The calculation
of the third order correction to the energy requires the knowledge of the whole matrix
of the total Hamiltonian, which is also sufficient to obtain the energy and the wave function
by the variational method. It is also known [7], that the interaction energy resulting from
a-variational calculation does not necessarily suffer from the loss of accuracy.

In the present method EV+E® is close to the variational result. The number of
time consuming exchange integrals, which are necessary for the calculation of E® is
proportional to the length N of expansion (46). This number is N times smaller than that
appearing in the variational calculations based on the minimization of the total energy
functional.

It should be stressed that it is necessary for any good perturbational theory of the
exchange forces to be consistent with the polarization approximation at large internuclear
distances. This means that in the region of vanishing overlap the second order energy
should approach the dispersion energy limit. _

In order to prove the proper long-range behaviour of the second order energy given
by the present method, it is sufficient to insert into the linear equations resulting from the
Equation (45) all overlap and exchange integrals equal to zero. Equations obtained in
this way are identical with those. arising in' the polarization approximation.

Finally, it should be noted that it is not necessary to use as ¢, the simple product
@4 5. Instead, one can take any function for which

X Voo — 0 as R - oo and

lim (HApo,—EoApy) = 0. @7

R-

In this case one can follow exactly the same way as in the case of the product function.

3. Numerical example

Preliminary calculations by the present method have been carried out for the ground
(X'Z}) and the first excited (b3Z;) states of the hydrogen molecule at 5a.u. <R < 10
a.u. The interation energy (Ei,) has been calculated as

E; = EV+E?, (48)

In Equation (45) the trial function consisting of four terms ; has been used, each term
constructed from the Slater type orbitals with all exponents equal to 1. This basis has
included all possible functions of the type 2p2p and 2p3p. The interaction energies are
given in Table I together with the variational energies, which are the best possible values
that can be obtained in the same basis set. From Table II one can see that the good coinci-
dence of the energies is not fortuitous, since the wave function (given as an illustration
at R = 8 a.u. only) calculated by the present perturbational method is very close to the
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TABLE 1

Interaction energies of the two hydrogen atoms in X’ 12;' and b’i‘,’," states calculated in a small basis set by

the present perturbational method and by the variational one. R in a.u., energies in cm™!

'O 398
R w
E® EW4+E® Variational E® E(l)+E(22 Variational

5 —554.11 —618.28 —618.48 +421.90 +360.61 € +360.57

7 —21.13 —32.73 —32.69 +16.53 + 54517 +5.459

8 —3.817 —9.193 —9.179 +3.033 —2.190 ° —2.181
10 —0.1119 —1.5318 —1.5315 +0.0931 —1.3182 —1.3180

TABLE II

The coefficients at the expansion functions in (D calculated by the present perturbational method and the
best possible coefficients calculated by the variational method for R = 8 a.u.

xz; [
Configuration
Perturbational Variational Perturbational Variational
2p22p.* —1.380—3 —1.3640—3 —1.46,0—3 —1.42;,—3
273(2px2px+2p,2py) —8.03,—4 —8.33,—4 —9.5610—4 —9.72;—4
2p.3p; —2.97,—3 —2.97,0—3 —2.78,0—3 —2.80,,—3
2‘%(2px3px+2p,,3py) —2.3130—3 —2.25;0—3 —2.090—3 —2.06;0—3

*z is the axis of the molecule.

best one (variational). The above numerical results confirm also the correct long-range
behaviour of the second order energy E®. If the internuclear distance R increases, the
agreement between perturbational and variational results becomes better. This is under-
standable if one notes that in the region of vanishing overlap the second order energy
approaches the dispersion energy limit.

For computational reasons the authors were able to carry out calculations in a larger
basis set at R = 8 a.u. only. If one adds to the previous basis set all possible configurations
of the 2p3d, 3d3d and 2p4f type (eleven expansion functions), one obtains the interaction
energies —11.24 cm~! and —4.01 cm™! for the singlet and the triplet state respectively.
The corresponding variational results obtained in the same basis set [8] are —11.14 cm™*
and —3.98 cm~1. Thus, the previously observed agreement is confirmed.

These preliminary calculations show that the method is able to give reliable results.
Its very well known Rayleigh-Schrédinger framework and simplicity of the computational
scheme suggests that it may be also useful in treating more complex systems. Further
research on this subject is in progress.

The authors wish to express their sincere gratitude to Professor W. Kotos for encour-
agement, current interest and many helpful discussions.
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