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Using the Fresnel scalar formulation of the Huygens principle, the problem of deter-
mining - the electromagnetic field distribution at the mirrors of an optical resonator filled
with a medium displaying a parabolic variation of the index of refraction has been reduced
to a simpler question of the so-called, passive equivalent resonator. The values of the equiv-
alent resonator parameters are identical with those obtained by the Kogelnik approach,
based on the ray matrix formulation of geometrical optics.

1. Introduction

Certain properties of the laser resonators filled with a lens-like medium as well the
influence of such medium on the laser radiation have recently been considered in literature
(11, 121, [3], [4], [5], [6]). Some aspects of the forenamed resonators have been explained
([11, [5]) by the Kogelnik theory [7], based on the ray matrix approach of geometrical
optics. Following the increasing interest in the resonators with lens-like media, an attempt
is made in this paper to present the theory of such a resonator with a medium of which
the index of refraction varies in radial direction (in the plane perpendicular to the resonator
axis). ‘ '

A 'parabolic radial variation of the index of refraction of a medium is assumed.
Such an assumption comprises a broad variety of functions describing the actual distri-
butions of the index of refraction. The system of integral equations, presented in this
paper, describing the distribution of the electromagnetic field at the resonator mirrors,
is obtained from the Fresnel scalar formulation of the Huygens principle ([81, [9]). This
is permissible in cases where the dimensions of the mirrors are large in terms of wavelength,
and when the field is very nearly a transverse electromagnetic one (the waves of TE and
TM types) and it is uniformly polarized in one direction. Taking into consideration
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a relatively small change of the index of refraction of the medium and basing on the results
of the work [10], it may be assumed that the application of the Huygens-Fresnel principle
is justified in the cases in question.

2. System of integral equations and equivalence parameters of a resonator
with lens-like medium

An optical resonator formed by two spherical (or flat) mirrors M, and M, spaced
at-a distance d is considered, as shown in Fig. 1. The radii of curvature of the mirrors
are Ry and R,, respectively. The mirrors are assumed to be circular, and of equal diame-
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:Fig. 1. Geometry of an optical resonator filled with a medium having a parabolic radial variation of the
- B index of refraction

ters 2a. All the resonator dimensions are assumed large against the wavelength. It is,
additionally, assumed that

a <d, 1

which is typical for the optical resonators.
The medium filling all the space between the mirrors is assumed to be determined by
the parabolic radial variation of the index of refraction

n(r) = n, <1—x %) s )

where:
r —distance from the resonator axis, x — characteristic parameter of the medium.

The characteristic medium parameter x is negative (x < 0) for the medium with
defocusing properties and positive (x > 0) for the focusing one. It is assumed that the
characteristic medium parameter x is small against unity, i.e.,

Ix| < 1. 3
Introducing the definition of the resonator mode in a steady state [9]:
v =DV, (G =1or2 @

and using the Fresnel scalar formulation of the Huygens principle the system of integral
equations describing the distribution of electromagnetic field at mirrors M, and M, of
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the optical resonator with the medium having the index of refraction n(r) may be written
down as follows:

N(r2.02,22)
i ¢ 2n expl—ik | n(r)ds]
1 ¥1,01,21
Y295, 92) = — | | ¥ 00 e rdride;,  (52)
2n R
0o
- M(r1,01.21)
ik a,2% exp[—ik [ n(r)ds]
YOy D(ry, p) = — | | v, 92) Nr2p2m2) rodrode,.  (5b)
27 R
00

It is seen that the introduced generalization of the Huygens-Fresnel principle for an
inhomogeneous medium is confined in the exchange of geometrical distance kR between
points M and N in the phases of the Huygens secondary disturbances by the extremal
optical length [nds, resulting from the Fermat principle [8].

The resonator eigenfunction »“(r;, ¢,), (j = 1 or 2) in (5a, b) describes the distribution
of the electromagnetic field at point (r;, ¢;) on the j-th mirror (Fig. 2); the resonator
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Fig. 2. Geometry of a passive optical resonator

)

eigenvalue y, (j = 1 or 2) corresponds to the eigenfunction ¢’ and speéiﬁes the dif-
fraction losses and the phase shift to which the waves are exposed during each transit

w
in the resonator, and k = — is the wave number.
[+4

Other symbols in (52) and (5b) are defined in Fig. 1 and 2. By definition (4) it is meant
that in a steady state the distribution of field at the j-th mirror reproduces itself within
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the multiplicative constant y* after each transit, the number ¢ specifies the successive
transition of the wave in the resonator.

On account of the symmetry (the index exchange 1 = 2) of the both equations of
system (5) only the first equation (5a) will be considered below.

To calculate the extremal optical path in a lens-like medium one uses the differential
equation for light rays [8]. For paraxial rays this ray equation has the form:

d*r xr
Mo g T "M @

for the distance r(z) of the optical path from the z axis. The solution of the differential
equation (6) for the problem in question is

— /A 2
r =1, cos _\la?f (z— _TL)] +7 \/2_ sin [ij (z 22—)] @)

where r, and rj are the ray position and slope at the point M at the mirror M,, respec-
tively.

dr e dy
— £ e
dz dz

For paraxial rays ( < 1>, the folldwing approximation for a line ele-

ment ds in a cylindrical coordinates r, ¢, z is reasonable

ar\* 1 ,(dp\"]"
= === , 8
ds [1+ (dz) +2r (dz>:| dz ®)

Taking this into consideration, and assuming that

ri 1
Z, & — 9
SR’ : ©)
2
ra
~d— -2 10
Zy = 2R2 (10
from simple but arduous calculations one obtains
N(r2,92,22) 2 ( )
ol r1¥y COS (P2 — @y
d = d ™ > ry Py 11
n(ryds = n, +g12d +g22d 4 1
M(r1,01,21)
where:
2x
a sin (i— d)
e S (12)
oy

. 2x 2
g1 = cos (\Ljf d) R, J27¢ sin (%C d) , (13)
g, = cos (\—/—%—f d) ® _ sin (@d) . (14

a R, /2%
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In calculation of the integral (11) the terms of third and higher orders with respect to r

are neglected.
Assuming the approximation [9] R & d in the denominator of the kernel of integral

equation (5a) and taking into account (11) and the expression [11]:

2z

. Tirpcos (@2— 1) .
exp | ik Fa —ime, |de; =

0
=2 m(* — ;)| 1, (A2 15
= 2T €Xp |:lm (i . (}72)] m ( dt > ’ ( )

it can be seen after integrating (5a) with respect to ¢, that the function

p(ri, P1) = Am(r1) exp (—im @,), (m = integer) (16)

satisfies (5a). I,, in (15) is a Bessel function of the first kind and m-th order. Next, taking
into consideration the symmetry relations (1 = 2) it can be directly shown that the functions
yu(re) and y,(r,) satisfy the reduced system of integral equations of the resonator with
a medium of the index of refraction (2), expressed as:

a

. k . T . ik . *
PP @(r,) = —exp | im+1) = ikd | | x5)(ry) exp — = (giri+grd) | x
d 2 2d
B 0

kryr,
X Im d* rldrla (173)

* k . T . ik . *
YD) = wexplim+1) = —ikd | | xP(rp) exp| — == (g1ri+8272) | X
d 2 2d
0

) .
x I, (%“) rodry, (17b)
where:
(J)* d : ha ) ;
JO0" = Soexp [ K@ =nod P, (=1 or ) s)

The system of integral equations (17) is the same as that for a passive optical resonator [12]
with equivalent parameters given by (12)-(14), (18).

In this way the problem under consideration has been reduced to a simpler one,
namely to the problem of the electromagnetic field distribution in a passive optical resonator.
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The proporties of the passive optical resonators with circular mirrors are described by the
three generallzed parameters [13]:

. ajazk _
= ond ’ (19)
s
Gy =g, (20)
as
a
G, = ;‘% g2, (21

where 2a; and 2a2 are the diameters of the mirrors and parameters g; and g, have the
form:

o, -
gl . Rl H ( )
Bl oo 2
) ) R2 e (23)

The parameters (19)—(21) of the resonator just considered are given‘by:

N= Gkmox (24)
T /2 sin (\l%)_c )
a
G; = cos C%C d) "X \/Z_x sin <\/2x >, (25)

G, = cos <ﬁc d) _—% (ﬁc d) : (26)
a © Ry 2x  \ a .
The passive optical resonator of parameters (24)-(26) or (12)—(14) may be referred to as
a passive one equivalent to a resonator filled with a medium of the index of refraction
described by expression (2). The form of parameters (24)~(26) of an equivalent resonator
is identical with those obtained by Kogelnik’s approach, based on the ray matrix formu-
lation of geometrical optics.

3. Discussion
‘Expanding the expressions (24)-(26) in terms of the argument of trigonometric
functions and neglecting the terms of third and higher orders it can be shown that for

2

YR @7

Ix| <
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which is satisfied for typical laser lens-like media (e.g., [11, [5]), the values of the equi-
valent resonator parameters N*, G; and Gj (24)~(26) can be approximated as follows:

. ng(l+o)ka®

N =——"— 28
2nd (28)
G = g(1—a)—2a, 29)
G, = g(1—a)—20, (30)
where:
xd? ,‘
o = 3—az . (31)

From the form (28)-(30) of the equivalent resonator parameters more simple than (24)~(26)
one can draw almost immediately a number of practical, conclusions. From expressions
(29) and (30) if follows, for instance, that for the plane-parallel resonator (g, = g, = 1)
filled with a defocusing medium (x < 0, @ < 0; e.g. laser He Ne at 1 = 6401 A, [1]),
the inequality GG > 1 is satisfied; so that, according to the resonator stability condition
(0 < GG, <1, [13]), such a resonator is unstable. On the other hand, if the medium
in the considered resonator is a focusing one (x > 0, o > 0), such a system is always
stable in cases of practical interest. It is seen, moreover, that a confocal resonator (g; =
= g, = 0) is relatively hardly sensitive to the influence of both the focusing and defocusing
media. Analogously one can derive the conclusions for the resonators of geometries other
than the plane-parallel and confocal. As has been shown experimentally ([1], [5]) the
lens-like medium has a very pronounced effect upon the resonator. For instance, the
results of work [1]show that the resonator for the 6401 A transition, consisting of a spher-
ical (R = 215 cm) and flat mirror spaced at 217.9 cm, is equivalent to a similar passive
resonator having a 222.2 cm spherical mirror and a mirror spacing of 215.34 cm. In the
passive case the former resonator possesses high diffraction losses and is unstable (G;G, <0)
but the latter (equivalent) one occurs to be stable (0 << G,G, < 1). Hence it follows that
for the 6401 A oscillation the former resonator is a stable one. The results observed ex-
perimentally and those predicted by Kogelnik, as well as the present analysis are in good
agreement.

It has also been experimentally proved [5] that the plasma of a CO, laser exhibits
a significant negative focusing defined by the plasma characteristics. The behaviour of
the resonator filled with a plasma of this kind may also be predicted on the grounds of
the theories discussed herewith.

The author is grateful to dr Z. Rozkwitalski for the revision of the manuscript
and for many fruitful discussions.
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