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One presents the possibility of solving the system of Chandrasekhar’s equations by
using .the power. series expansions for the correlation functions.

1. Introduction

The statistical treatment of the theory of hydromagnetic turbulence involves an in-
complete set of equations, the number of which is less than the number of unknown
functions (i. e. of all sorts of correlations). Supplementary arguments are to be imposed
in order to obtain a complete set of equations (see Millionstcikov [1]. Kraichnan [2]).
Chandrasekhar [3] obtained, using the Millionstcikov hypotesis, a pair of equations for
the second order correlation functions of the velocity and the magnetic field, respectively.
These equations were solved by Chandrasekhar in the approximation v = 4 =0 and
7 —0.

The object of this paper is to give a formal solution to Chandrasekhar’s equations
for an isotropic, homogeneous and stationary turbulence by expanding the correlation
functions in power series of independent variables. This method was proposed by Smirnov
and Shaplro [4] in order to solve the equation for the second order correlation functlon
of the velocity in the case of ordinary hydrodynamic turbulence.

2. The Resolution of Chandrasekhar’s equations

. Let us consider the following equations:,
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where v is the coefficient of kinematic viscosity; A = 1/4nuc, u and o are the coefficients
of magnetic permeability and electrical conductivity, respectively. O(r, 7) and H(r 1) are
the scalar functions defined by the correlation tensors:

Q; = ulr', tyu (', t")>
H;; = <hi(;:,, t ')hj(7'/a t'")y

Here, u; and h; are the components of .the velocity and the components of the magnetic
field divided by (4mo/u)?, ' and 7’ are the radius vectors of two neighbouring points,
t',t"" are two instants of time, r = |r”’ S t’, and the angular brackets denote
0% 0
ensemble averages. The operator Dj = oz + — - is the five dimensional Laplacian
r r
operator.
For the sake of simplicity we shall consider the following longitudinal correlation

functions f{(r, v) and g(r, 7):

20 2H
fr,7) = - S gr,7) = — o 3
Substituting (3) into Eqs (1) and (2) we find:
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If the hydromagnetic turbulence is isotropic, homogeneous and stationary, f(r, 7)
and g(r, 7) are even functions with respect to r and 7, and power series may be used for
them:

0= T 3 awrtaoe =15 gr9= % 3 burtboo =1 ©

We shall consider that these series are uniform convergent and they can be derived and
integrated term by term. By substituting (6) into Eqs (4) and (5) we obtain:
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Now, we equalize the coefficients corresponding to the same powers of r and 7, and we

find: '
1
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where i,k >0 A
If the correlations decrease with the distance, it may by assumed that.
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and the integration of equation (4) with respect to r leads to:

=0 (11)
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By introducing (6) into Eq. (12) and identifying the coefficients of the terms with the same
powers of r and 7, we find:

Gozi1 = m [280v2a, ,— <u?) (Cp+a?K,)] (15)

For C, and K, it is easy to obtain from (13) and (14) the following expressions:
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Now, from (9), (10) and (15) one concludes that if we know the coefficients @i and b;,,
i. e. the correlation functions f{r, 0) and g(r, 0) (from the experiment or another theory),
the functions f(r, 7) and g(r, 7) can be determined. One assumes also that {u2), <h?y,
v and A are known. .

3. The resolution of the generalized Chandrasekhar’s equations

The previous procedure can be applyed to the more general equations, which involve
terms describing the external force [5]:
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where G; and G, represent the odd and even parts respectively with respect to the time ©
of the scalar function G defined by the tensor G; i = {fi, uj); fi are the components of
the external force per unit mass, and I, is the even part of the function I defined by the
tensor I;;, = {ujuify’>

Using the expressions (3), Eqs (18) and (19) become:
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where we have set:
0G . 0
S(r,7) = — —DsG,+ (1 — +5 )1, (22)
ot or
The function S(r, 7) is even with respect to r and 7 and can be assumed as:

S, 1) = 2 Z syrtigt (23)
i=0 k=

By using the previous procedure we obtain:
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From these expressions results that the correlation functions f(r, ©) and g(r, 7) can
be determined from the functions f(r, 0), g(r, 0) and from the correlation of the velocity
with the external force. These results are a generalization of those derived by Smirnov
[6] in the case of ordinary hydrodynamic turbulence.

4. Conclusions

The purpose of this paper has been to present the possibility of solving the system of
Chandrasekhar’s equations. If the condition (11) is fulfilled, this system of equations for
f(r, ©), and g(r, 7) has the solutions in the class of functions expressed in power series
(6). The solutions were obtained in the form of reccurrence formulae for the expansion
coefficients. To determine these solutions it is necessary to know the coefficients a; and
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8,0 (i. e. the correlation functions f{r, 0) and g(r, 0)) from experiment or another theory
of isotropic, homogeneous and stationary turbulence, which considers Millionstcikov’s
hypothesis as fulfilled. We mention that this hypothesis of quasinormality sometimes
leads to unphysical conclusions [2] and it may be applied only for short time intervals.
The method used in this paper was proposed by Smirnov and Shapiro [4] for the -
hydrodynamic turbulence. This method was then generalized to include the case when
external force is present. :
~ Our paper giving a formal solution to Chandrasekhar’s equations should arouse
interest and attempts should be made to find the physical aspects of the results obtained.
and to_ verify them experimentally. y
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