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ONE-DIMENSIONAL ISING MODEL WITH ANISOTROPY

By J. M. KOWALSKI

Institute of Mathematics and Theoretical Physics, Technical University, Wroctaw™
(Received November 15, 1971)

The one-dimensional Ising model, with § = 1 and the anisotropy of the single-ion
type, is investigated. The correlation functions, specific heat and susceptibility in zero ex-
ternal field are calculated.

Properties of the Ising ferromagnet for higher spins in the presence of the single-ion
anisotropy have received some attention recently [1-4]. :

In this note we shall present the results of a calculation of some thermodynamic
quantities for the corresponding simple one-dimensional model, i.e. for the linear chain
of the Ising spins (S = 1) with nearest-neighbour interaction. The total energy for such

a system consisting of 2N spins p; =—1, 0, 1, arranged in a ring, is given by
_ 2N 2N 2N )
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where J > 0, K and & are the exchange, anisotropy and field parameters respectively.

At the beginning we discuss the problem of the ground state arrangement for & = 0.

Let us divide all possible configurations of spins into classes C" (m = 0, ..., 2N). A class C"

consist of all configurations for which strictly m spins have the zero projection. Of course,

the class C2" consists only of one configuration with zero energy. The minimal energy
for the class C, is

Sn(C°)
R T —(1+8) )

K
where &= 57 and corresponds to ferromagnetic ground state. On the other hand,

the minimal energy for the class C”, for 0 < m < 2N, is

W(C") m+1 m
“UN [(1‘ 7&‘) “(“ ﬁ)] &
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Thus, after additional minimization over the classes we obtain the ground state energy

®

—(14¢) fore> —1
(ferromagnetic order)

min __
e 0 fore < —1 @)
(all u; = 0).
The ground state for ¢ = —1 is double degenerate for finite N and becomes undetermined

in N — oo limit.

The thermodynamic behaviour of the given system for £ = 0, and the zero-field
susceptibility can be calculated exactly by the direct application of the ‘““generalized Bethe
approximation” introduced by Obokata and Oguchi [5]. In this method the Bethe cluster
consisting of some spin p, with its two nearest neighbours u_,, u, is considered and the
corresponding reduced density matrix is introduced

1 |
N (R ®

where X’ denotes the sum over all u;'s except those in the Bethe cluster. Because of both
the symmetry arguments and properties of u;

(= Dpy(u;+1) = 0 (6)

the general expression for the oz may be written as

op = A[exp [opo(u— +py) +u(u? +ud +ud)+
U+ po+u)]] A+op_y +yp® ) A +op, + TH3) @)

where v = 2JB, u = KB, I = hf and A4, o, y are some functions of the temperature and
field. For calculation of the thermodynamical averages

Tr {Q—B}

(W Tr o5

®

the factor A4 is not needed. The functions « and y can be determined from the consistency
relations

Cuoy = {pyy ®
Cugy = <> (10)
after expanding them into the power series in /
o= oy Itos - B+
Y= Yo+yy I+ : (11)

(From the invariance of g5 under the transformation p; » — W, I > —1 it follows that «
and y must be odd and even functions of /, respectively.)
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Strictly speaking, the forlinulae'and calculations with o and y independent on N are
valid only in the thermodynamic limit for the translationally invariant system. For our
case we obtain after corresponding calculations

8o = 1470 = 4—1b {a+a Hb—1+ V[(a+a ")b—1]7+8b} (12)

wherea = expuv, b = exp u,

kT
Fig. 1. Correlation function <{ug> vs reduced temperature W fore = TJI:

0. 0; 1.0; 50 (for ferro- and antiferromagnetic interactions)

—=5.0; —1. 0;—0. 5;

7 2 3 4 5 .6 7 8 9 70

. : kT
Fig. 2. Correlation function <uou,> vs reduced temperature Efor £¢=35.0; —1. 0; —0. 5; 0.0;

1.05°5.0 (correlation function {u,> for antiferromagnetic interaction as a function of the variable

T
2]J]
K e
and the parameter ¢ = —— have an opposite sign)
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and
26¢+a
ay = dpbla—a™? = )
1= dob( ) 3b—a%b+a+200b(a+2a" ) (13
Using (12) we may calculate the correlation functions in zero field
2bd,+1)2
2\ l—( 0
w8y e (14)
2b%(a—a~)dy[dob(a+a™ ") +1
s = =y ! (15)
LY
where
Tr'op = A~ Tr 05 = 2(5ob)*(a’b+a"2b+2b+2)+
+48ob(ab+a”'b+1)+2b+1. (16)
c
70— : : 1
Fig. 3.8 'ﬁhtC"d d temperat ka —K~——50'—10'—05'00‘10'50
ig. 3. Specific heal TLQI@ uce emperaureE\—J—| ors——;'.’—l— . 0; . 0; .5;0.0;1.0;5.

(for ferro- and antiferromagnetic interactions)
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Fig. 4a. Inverse initial susceptibility (2Jx)™' vs reduced temperature 7 fore =0.0:0.5:1.0;5.0
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Fig. 4b. Inverse initial susceptibility (2/x)~' vs reduced temperature =7 for e =0.0; —0.5; —1.0
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For J = 0(a = 1), when the system consists of independent spins, we obtain from (14)
and (15) {uou;> = 0, (ud> = T may be expectéd. For ‘K =0 (b = 1) the results

agree with those given in [5]. _
From (14) and (15) we may deduce the low- and-high temperature behaviour of the
correlation functions. We have

1 fore> —1

im <(pgd = lim {popy = 1% for e = —1 a7
TS0+ T-0+
0 for ¢ < —1
and
lim <poy =%,  lim {pop;) = 0. (18)
T4+ T+ o

2J%,
s
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Fig. 5. Initial susceptibility 2Jx vs reduced temperature TJ-for e= —5

Using (12) and (13) we may also calculate the initial susceptibility, according to definition

0oy
Kp = . 19
F h e (19)
After corresponding,icalculations we obtain
1 . , .
2Ky = % [<uo) +2(ay +1) Cptopty ] (20)

5 kT
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and

b(a—a™") (26, +a) oy .
= 4 -1 — =0 . (21)
3b—ba*+a+25,ba+4,b*a do

o

The susceptibility given by the above expression features interesting behaviour in the
low temperature limit. Taking into account only leading terms in corresponding expansions,
we obtain after long but standard considerations that

2Jkry — 0 for ¢ < —1, 22)
(exp)

2Jkp)™' > O0for —1<e<2, (23)
(exp)

Jkp) ™ ~ z—» 0 for ¢ =

Wl

; 24

QJIrp) ™t ~ ;—» 0 for & >

Wi

; (25

where the symbol (exp) denotes that the corresponding quantity behaves like
x~1 - exp (const/x).

. i . K
The results of the numerical calculations for several values of the ratio & =,'27

are presented in Figs 1-5. The dotted curves for K = 0, which are known, are drawn
for comparison.

The author is greatly indebted to Mrs I. Rutkowska from the Computer Centre of
our Institute for programming the numerical calculations -and to Mr L. W. Zych for
drawing the figures.

Note added in proof: Recently, the authors has been informed that equivalent model has
been considered by Katsura and Tsujiyama (in *“Critical Phenomena”, Proc. Conf., ed. M. S. Green,
J. V. Sengers, Washington, 1966, p. 219—225) and also by A. Hintermann, F. Rys, (Helv. Phys. Acta,
42, 608 (1969)). They use this model to examine the properties of an annealed Ising model (in this
interpretation <u2> = p corresponds to concentration of magnetic ions and D to chemical potential).
In our paper we investigate the system’s behaviour, following Capel, with regard to anisotropy cons-
tant D, and thus our results are complementary to those given by quoted authors.
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