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VIRIAL EXPANSION FOR NON-IDEAL REFERENCE SYSTEM.
III. CHAIN APPROXIMATIONS
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On the basis of the renormalized virial expansion, formulated in the preceding parts
of this work, the renormalized one-chain approximation is constructed for the Helmholiz
free energy and for the radlal distribution function. Preliminary numerical results are pre-
sented for the system of particles interacting through the Lennard-Jones potential and for the.
hard-sphere reference system. The hard-sphere equation of state of Carnahan and Starling
and the zeroth approximation for the hard-sphere radial distribution function (g3(r) =
=0 for r < d, g)r) = 1 for r > d, d = hard-sphere diameter) are used in computations.
The results are compared with the experimental data for argon. A good agreement of the
critical temperature (T& = 1.254 vs experimental value 1.26 for argon, in reduced units),
and relatively good agreement of the critical density (about 79; of discrepancy) are found.
However, the calculated critical pressure differs significantly from the experimental value.

In the first two parts of this work [1] (hereafter referred to as I, II), the renormal-
ized — for the non-ideal reference system —virial expansmn of the Helmholtz free energy,
A, and of the s-particle distribution functions n (r*), has been formulated, and its rela-
tions with the Zwanzig perturbation theory [2] have been discussed. In this part we shall
discuss the possibilities of constructing some formal approximations, for which the graph-
ical representation of the renormalized virial expansion forms a suitable starting point.

The simplest of such approximations is perhaps the ring, or one chain (OC) approx-
imation, used mainly for describing the classical electron gas (cf. e. g. [3, 4)). Recently
we have shown [5] that the OC approximation also qualitatively describes some aspects
of first-order ‘phase transitions and of condensed phases. We shall now. construct the
renormalized OC formulae, taking into account the properties of the reference system
(ROC approximation). We shall also present preliminary numerical results obtained for
the hard-sphere reference system and for the Lennard-Jones potential.

* Address: Zaklad Chemii Teoretycznej, Instytut Chemii, Uniwersytet Jagiellofiski, Krakow, Krup-
nicza 41, Poland. .
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The considered system and all notation are the same as in I and II. Especially, the
subscript or superscript 0 will denote the reference system; v is the volume per particle,
T — temperature, W(r) = V(r) — V°(r), where V(r) and V() are the true and reference
intermolecular potentials. ’

1 General approxzmatzons

In th1s Sectlon we shall cons1der some general propertles of the renormahzed vrrlal
expansion. The simplest way of mtroducmg of thé properties of the non-ideal reference
system into any known approximate relation describing the free energy of a fluid under
consideration, obtainable from the virial ‘expansion, is the use of the formula (I.3.4)
together with (1.3.3). Let 47 denote the considered approximate expression for the free
energy, obtained in the usual way, with the use of the exact intermolecular potential (i. e.
with the ideal gas reference system); hence, the formulae (I.3.4) and (1.3.3) imply that

AL 5 4@ = 4, +A<“> A(“) 1.1)

where "4, and A(“) are the exact and the approximate, free energy of the reference
system respectively (the latter calculated in the same approximation as 4), and A@ s
.the desired approximation for the frée energy, w1th the properties on the non-ideal refer-
ence system taken into account. '

Note that (1.1) may be written down by intuitive reasoning: a given approximate
expression for the free energy should be corrected by adding the difference between the
exact and approx1mate free energy of the reference system. The appropriate relation for
the radial distribution function:

g9(r) =-g&(r)+e M ORT g (1) — gO ()], (1.2a)
or
87() = g0, (1.2b)

is implied by the formulae (I 4. 1) (I 4. 5) and (I 2 7) or by {. 4 4) and (1,2.10). Slmllar
formulae may be easily wrltten down for remaining distribution and correlation functlons

In _the -renormalized vmal expansion, formulated in I the subsequent terms are
expressed by the contributions from linear graphs (bu11t from two kinds of lines), multi-
plied by some rather 1nvolved combmatlons of the s-partlcle correlatlon functlons of the
reference system. The s—partlcle correlatlon functlons (for s > 3) are usually unknown
for non-ideal systems be51des their presence in the integrals expressing renormalized
virial coefficients leads to serlous dlfﬁcultres in formal summations of the virial series.
We introduce thus, as is frequently done in s1mllar s1tuat10ns, the superposmon approxi-
mation for s—partlcle dlstrlbutlon functlons 1, 2(r) [6, 7]

nlr) =07 ] &%),

J>i=1

. A N=1,G%=1,h=0, for s =3 T (L3)
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(¢f. 1, Section 2). Another possibility would be to use the convolution approximation [7];
it is now an open question which of these two approximations is better.

The superposition approximation results in a remarkable simplification of the re-
normalized virial series: it is easy to convince oneself that all terms represented by graphs
which are not doubly linked vanish identically when (1.3) is used. The renormalized virial
series (of ariy quantity:'rA,‘ ng, g(r), hy, etc.) will be now of the same form as the usual
Ursell-Mayer-Montroll [8] virial series. The only difference is that the renormalized
graphs are built from two kinds of lines, representing the renormalized Mayer functions
F, and F* (cf. Eq. (1.3.6)) in such a way that to every point of the graph at least one Fl-line
is attached. This very close resemblance —in the superposition approximation — of the
renormalized virial series to the usual one will enable us to formulate —in the next Sec-
tion — the renormalized one-chain approximation. . .

" 2. One-chain summations

One-chain (OC) approximation consists Jin an.apprpximatfgn of the n‘z_-tshr‘virﬂial
coefficient by the:simplest (topologically) graph representing this coefficient. In the case
of the free energy such a graph is a polygon (with m angles); for.a radial distribution
function it is one simple chain connecting two root points through. m internal points.
The whole virial series approximated in this manner may be easily summed up to.the closed
formulae. In the case of renormalized virial series (in the superposition approximation),
because of the presence of two kinds of lines, we have more than one polygon (or _simpie_
chain) in- every virial coefficient. This fact enables us. to introduce at least.two, different
OC approximations. The simplest one is to retain — for every virial coefficient — only
that OC graph (polygon or simple chain) which is built from F'-lines only. Because in
this case all lines-in the retained graphs are identical, we have exactly the same topological
situation as in [5]. All the calculations are thus identical as for the non-renormali}z’ed
case (except that the original Mayer function f(r) is now replaced by F'(r)), and we get

I

kT ., UkT (o 1 1
Ao~ UF1\0)+‘—+ dgq{ln 1—;F1(q) +

2w 2021)°
1 1,
+-T(D+ 53 F;'(q)}, @.1)
v 20 -
.0 i - K(L) 1 —igr F%(‘]) }
g(r) = g'(r) exp { kT +‘ @ Af;dqe @’ (2.2
where S ~
I'(q) = [dre " F\(1). (2.3)

The pressure P (equation of state) is obtained by the differentiation of (2.1).with respect
to v (it is to be noted that I';(g) depends on v through the radial distribution function: of
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the reference system):

0A kT [1
P= - (;) = Po— — [ rl(O)—Gl(O)] -
v/ 2vlv

kT 1 I'(q) v—G(I'y(q) T'i(g)
- a0 f dq {m 1—- ;Fl(?)' t e Teoria |~ 3 } (2.4)
where
0 . 0 )
G(q) = [0—0 r 1(‘1)]T = Jd'e"’"fl(") [a% go(r):,r- (2.5)

Another, and perhaps better, OC approximation (which will be called hereafter the
renormalized OC~ROC — approximation) is constructed by retaining all the polygons
or simple chains containing both F* and FO-lines. The presence of FO-lines, together with
the rule that to every point at least one F!'-line must be attached, complicates somewhat
the summations. Let us first consider the summation of polygons (rings) of the free energy.
Such a ring may contain sequences (chains) of any length of F'-lines, whereas the FO-lines
cannot be linked with each other and must be separated by at least one F-line. We shall
thus proceed as follows:

The whole class {R} of polygons describing the ROC approximation is divided into
subclasses {R;}, each containing rings with k FO-lines, and. any number (m-k) >k
of F'-lines (m > 3 is the total number of lines = total number of points of the ring). The
points to which FO-lines are attached will be called 0-points (there are 2k 0-points in the
graph R)).

Let us consider first the case k = 1. The m points of such a ring may be labeled in m!/2
topologically different ways (the graph possesses symmetry only with respect to left-right
inversion), and the contribution to the free energy from the subclass {Ry} is, from (1.3.7)-
—(1.3.10), and (1.3):

o0

m! 11
~kT Y o Ztim = — | dry . dr,FO,FL, R =
/ 2 a0V m!) y

m=3
kT
i Sl st N d —m+11—v rm-l e
2(2n)3j q E v ol@I't ™ (q)
m=3

k . T ,
=Ras E)Tb quro(QJW i (2.6)
where
To(q) = [dr &¥"FO(r). 2.7

I'y(g) is given by (2.3), and the well-known properties of the Fourier transforms of con-
volutions have been used.
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When k > 2, we first choose 2k 0-points, and divide the remaining points into k
groups, containing my, m,, ..., my points (m; > 1,2k+Y m; = m, the total number of
points of the ring), each group of points belonging to one chain of F!-lines. This may be
done in m!/(2k),m,!...m,! different ways. The m; points within the i-th F'-chain may be
labeled in m;, different ways. We now construct the generalized ring, built of 2k 0-points,

A )
R = — 0 —_ 7
k ’ e—» = F} ’ ——o = F.;
1 i J Yy i J g2
)
2k 2k-1

~ .7 +’II+---=¢U
[ { j i J

[ B i

Fig. 1. Generalized ring Ry

L 4

by summing the contributions from all graphs which differ only in the number of points
within a given F'-chain. The contribution to the free energy from the generalized ring,
drawn in Fig. 1, is thus:

g g . .
R, = —kTp™ %! @0 th = fv Jdrl e APy FY,@53FY o Doy, (2.8)

where

_ U. —igr Fl(q)
d(r) = @ que _—v—FI(q)' 2.9

The summation of all generalized rings is now easy: it is sufficient to note that such a ring
possesses a k-fold symmetry axis (¢f. Fig. 1), as well as symmetry with respect to the left-
-right inversion, so that the combinatorial factor for it is (2k)!/2k, and using (2.9) and (2.7),

we get:
S v UL o@N@
2k T ‘kT2<zn)3quZYc[B 77—"&(11)] -
k=2

okT f ; { 1 T@(@) | 1 To(@Is(a)
=_—=|dg{n|1—- — I+ - .
202m) v o-Ty(g) | " v v-Ty@ J
The complete ROC approximation for the free energy is obtained by summing the contri-
butions from all rings, including rings containing no FO-lines, i. e., by adding together
the contributions (2.1), (2.6), and (2.10):
kT

. vkT '
Agoc = Ao— E)—FI(O)-F W J‘dq {ln

(2.10)

o1 1
1- —F1(‘1)[1+ —Fo(Q):” i
v v

1 1 1
+-I'y(q) [1+ — T+ -T, 0(‘1)]}' (2.11)
v - 2 v
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The equation of state is thus:

kT kT
Pnoc = Py— %I} 1(0)—-G (0)] 20n )3 J‘dq{].n.—

1
1- —Fl(q)'[1+
)

n 1[ (4 ):” [F1(¢1) Gi(q)] [U+FO(Q)]+F1(¢1) [Io(q)— Go(‘])]
o v — 1(‘1) [v+To(q)]
1 r,
YDy sr@+r@l+ 1@ [oo<q>— Log ’Z(f)]} . e
where A
] o .
Go(q) = |:5* FO(Q)] . (2.13)
v ’ N : T : .

hy (rpdroc = hg(";z) + A + I l

7
A A m
7 2 7= « 2

Fig. 2. Generalized one-chain graph.s"for the ROC approximation of the radial distribution function.
The symbols are the same as in Fig. 1

The ROC approximation for the radial distribution function may be constructed
in a similar way. The generalized graphs of ggoc (r) are shown in Fig. 2 (strictly speaking,
these graphs represent the two-partlcle effective pseudopotential h,(r) —cf. I), and the
result is

W(r)

groc(r) = go(r)‘exp{— o +

: (2_1)3 que—iq r (Q) [U+FO(Q)]+F1(Q)FO(q) [ZU‘I'FO(‘])]} ) (2.14)

v’ — ry(q) [v+Iya)]

3. Numerical results

We shall consider a system where the complete intermolecular potential is that of
Lennard-Jones

o) = 48 [(a/r)12—(a/r)S]. (3.1
As the reference system we choose a gas ‘of hard spheres of diameter d:

wr<d,for) {—-lvrj<d

V°(r)i_={0 r>d Or>d’ (3.2)
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In this case the difference W(r) = V(r)—V°(r) has no meaning. for .r < d. We shall
thus admit that the corresponding Mayer function is of the form

jO r<d

7O =1 1 g0 0 =701, (33)
which means that we choose W(r) as: }
) 0 r <d -
W(r) { V(r) P d B (3.3a)

The last relation is usually chosen when one deals w1th the hard-sphere reference system
(¢f., e. g., [9-11]). In order to take into account the fact that the Lennard-Jones potential
is finite (although high) for finite r < d, Barker and Henderson [9] (¢f. also [10]) pro-
posed to calculate the hard—sphere diameter from the relation

d=dT)= — ‘i’ Sf(@)dr. 3.4

We shall adopt this proposition in our calculations; we shall also show how the change
in d influences the results.

As the equation of state of the system of hard spheres we take that of Carnahan and
Starling [12]:

Po L4y+y*—)°

i L 639

which implies

2 1 7
Ay = Ay +kT = 3.6
" [ (1 y)] ¢

where A;; is the ideal gas free energy per one particle.

The analytic form of the radial distribution function of the system of hard spheres,
g°(r), is now also known [13] (¢f. also [10]). Its use is, however, rather tedious because it
requires numerical inversions of the Laplace transforms for every value of density. We
shall thus use for the present — preliminary —calculatlons the zeroth approximation for

g°():

0 r<d
go(r) = {1 e d 3.7
We shall 'express';'all. the eomputed quantities in the following reduced units:
T+ = kTe, V+ = v|bg, P* = Pbyfe, by = 3n03, d* = d]o,
A+ = Als+T+1In (bo/23), i. e., Ay = =T+[1+ In (V9)], (3.8)

where A is the thermal de Broglie wavelength (cf. I).
.. Computations were performed with the ODRA-1204 computer; the Simpson rule
was used for computing the integrals involved. It is- to be noted that, within the parameter
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7.0 20 vt

Fig. 3. The dependence of the free energy on specific volume in the ROC approximation. The curves
are labeled by the values of temperature
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Fig. 4. Pressure-volume isotherms in the ROC approximation. The curves are labeled by the values
of temperature
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Fig.v 5. Phase diagram for the gas-liquid transition in the ROC approximation (solid line). Crosses denote
the experimental values for argon [15]

ranges used in this work, all integrands involved (including the logarithmic and rational
functions in Egs (2.11) and (2.12)) have no singular points.

The dependence of the free energy and pressure on volume in the ROC approxi-
mation, Eqs (2.11) and (2.12), is shown in Figs 3 and 4 for several temperatures.
It is seen that these are van der Waals-like isotherms, which are interpreted in the usual
manner (cf., e. g., [14]) as describing the gas-liquid phase transition and the critical point
of this transition. The dashed lines in Fig. 4 show the regions of coexisting phases, deter-
mined from Fig. 3 together with the stability condition (9%4/8v?)7 > 0. Figure 5 pre-
sents the phase diagram for the gas-liquid phase transition, i. e., the densities o+ = 1/V'+
of the coexisting phases vs. temperature 7+, determined from Fig. 4 (full line), and the
experimental values (crosses) for argon! [15]. A comparison of the values of T, v,
and P and compressibility (Pv/kT), at the critical point, calculated in the ROC approxi-
mation, with the experimental values [14, 11], as well as with the values obtained from
the perturbation equation of Barker and Henderson (BH) [9] and the perturbation-
-variation method of Mansoori and Canfield (MC) [11], is given in Table I.

) TABLE I
Comparison of the critical constants
Experimental BH MC ROC
[11] [9,11] [11] Egs (2.11), (2.12)

ok 1.26 1.35 1.36 1.254
vt 1.50 ~ 1.59 1.47 1.40
Pt 0.248 0.293 0.346 0.411
Pv
kT, 0.293 0.345 0.374 0.460

1In the reduction of experimental data the values of o = 3.405 A, elk = 119.8 °K [15, 11] have
been used.
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07 08 09 10 d* 16 10 20 30 vt

Fig. 6. The influence of the hard-sphere diameter on the values of the free energy calculated in the ROC
approximation for T+:= 1.25
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04t

03 -

|
7.0 2.0 30 v*

Fig. 7. The influence of the hard-sphere diameter on the values of the pressure calculated in the ROC
approximation for T+ = 1.25

All of the above results have beeri obtained for hard-sphere diameters d calculated
from the Barker-Henderson prescription (3.4). We have also performed computations
for different values of d in order to see how the assumed properties of the hard-sphere
reference system influence the results obtained in the ROC approximation. Figures 6-8
show the dependence of the free energy, pressure and critical constants on the hard-sphere
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| 1 | ! 1 1 !
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Fig.' 8. The influence of the hard-sphere diameter on the values of the critical parameters calculated in
. ROC aproximation’.

diameter. It is seen that all these quantities depend fairly strongly on d*. It is noteworthy
that d* calculated from the relation (3.4) does not change very much with temperature:
from 0.973 for T+ =1 to 0.957 for TH = 2.

4. Final remarks

The preliminary numerical results presented in the preceding Section seem to show
that the ROC approximation may provide a’simple enough and reliable analytical equation
of state for simple liquids. It is seen from Table I that the ROC approXimation predicts
the best value of the critical temperéture and only a slightly worse value of the critical
specific volume in comparison with the perturbation BH equation of state and the pertur-
bation-variation MC method. On the other hand, the value of the critical pressure (hence,
the critical compressibility (Pv/kT). also) calculated from the ROC approximation is
much too high. The phase diagram in Fig. 5 shows that the presented calculations lead
to better results for the density of the liquid than of the gaseous phase. The BH and MC
theories predict much better agreement with the experimental coexistence curve at lower
temperatures, but much worse near the critical point (compare with Table ). The good
agreement with the experimental values of the critical temperature and critical volume
calculated in the ROC approximation is all the more interesting that we have used only
the zeroth approximation, Eq. (3.7), for the radial distribution function of the hard-sphere
reference system, whereas the BH and MC results are ‘obtained with the use of the full
(as far as possible) g°(r). Moreover, the use of the zeroth approximation, go(r), in the
BH or MC formulae leads to completely erroneous results. It is, however, an open ques-



752 ]

tion whether the use of more detailed forms of &°(r) will improve the predictions of the
ROC approximation.

Figures 6-8 show the strong dependence of all computed quantities on the chosen
value of the hard-sphere diameter d. The comparison of data collected in Fig. 8 and Table I
seems to show that the best results are obtained when the Barker-Henderson relation (3.4)
is used (d+ = 0.968 for T+ = T = 1.25).

Figure 6 also shows that in our case the hard-sphere diameter cannot be used directly
as the variational parameter: within the whole investigated range of d+, the free energy A+
is a monotonic function of d*. This fact, however, may be connected, among other things,
with the use of the zeroth approximation for the hard-sphere radial distribution function.
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