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Following Rai and Calais (D.K. Rai, J. L. Calais, J. Chem. Phys., 47,906 (1967))
a 2p, orbital was added in basis for calculation of energy of Li, molecule in AMO method.
With a trial function for 2p, orbital energies were calculated for a specific internuclear dis-
tance (R = 6.0) and compared. It is found that modification in energy is not much.

1. Introduction

The Lithium molecule has been subject of extensive research concerning its wave
function, ground state energy and other properties. Generally such studies are carried
out within the Hartree-Fock approximation. However, there have been severa} attempts
to improve over the traditional Hartree-Fock method [1] to [5], especially by the AMO
(Alternant Molecular Orbital) method proposed by Léwdin in 1954 [6].

The AMO method is a technique to calculate part of the correlation energy in systems
which are too large for calculations by the method of superposition of configurations.
It has indeed been successfully exploited by (see for survey [7]) Rai and Calais [8] to cal-
culate energies of Li, molecule and their results are very encouraging, although they have
used a simple basis consisting of 1s, 25 orbitals. In the present paper it is intended to ex-
tend the work of Rai and Calais to include contributions of higher orbitals.

2. Energy expression

Rai and Calais have worked out the energy expressions of Li, molecule for projected
and unprojected cases in the AMO method. They have treated Li, as a six electron problem
assuming that four electrons are lying in a closed shell 16, 167 while the two valence electrons
are represented by two AMOs (following the first of the three methods of constructing
AMO for a diatomic molecule like H, [9]).

The energy expressions of Rai and Calais have been extended in this paper to include
the contribution of a 2p, orbital utilizing a hybridization parameter Q. Then energy ex-
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pressions (projected and unprojected) become a function of Q and A (correlation pairameter).
The projected energy takes the following form:

Epoj = Er+ 3 (1427 [A+D’ELQ) +(1 = H’ELQ) —(1 - 2))E ()], @
= £
El - Ec + R » (2)

where E_ is the same as in [§].
1
Eg(Q) =2 Jvh(l)gg,Q(L 1)dU1 -+ Jr_' [290(15 1)@g,Q(23 2)+
12

+20,.0(1, 10,42, 2)+ 0, 0(1, 1)0, (2, 2)—
—edl, Z)Q%Q(z’ - QQ,Q(I’ 2)o.(2, 1)]d”1dvg, ?3)

E.(Q) has the same expression as E(Q) with g replaced by w.

1
Eyu(Q) = JT Qg,Q(la z)eu,Q(la z)dvldvz: (4)
12
where
Oxo = 05+Q " 037 +0%0%, (5)
037 = 203202+ 208203, (5b)
oy = 203207, (5¢)

X =g u,y=s,p.

It is clear from the above expressions that. E(Q), E(Q) and E,(Q) for Q = O re-
duce to E,, E, and E,, of reference [8]. This serves as a check for the present calculation.

Similarly one can write down the energy expression for the unprojected casé as a function
of Q and A

3. Details of calculation

The calculation is a routine task, consisting in writing down the total Hamiltonian,
basic functions, constructing the molecular orbitals, transforming the integrals and per-
forming numerical computations. To save space we only point out the differences between
[8] and our work. The first difference occurs in the basic function where we add a 2p,
orbital over the previous 2s choice [8]

2p, =n, ze ™ (6)
with

o = 1.00.
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Let us now consider the construction of molecular orbitals. With the help of the above
basic atomic orbitals, we form the following set of symmetry orbitals (M. OS):

1o, = Ny(1s,+1sp).

lo, = N,y(1s,—1sy),

26, = N3[(25,+25,) +QQ2p,, +2p4,)):

20, = N4l[(25,—2sp) +Q(2p,,—2P,,)]- Q]
However, the above set is unsuitable as 20;, 26, are non-orthogonal to 1o, and lo, respec-
tively. Following Schmidt’s procedure, the orthonormal orbitals are given by:

20, = Ns[(25,+28;) +0Qp,, +2p,,) + p(ls, +1sp)},
2a'u = Nﬁ [(2Sa e 2Sb) + Q(zpaa - 2pa-b) + V(lSa - lsb)]a (8)

where p and v are determined by (20,, 16,) = 0, (29,, lo,) = O respectively.
The next step is transforming M.O.S. to A.O.S. Let us assume,

¥ = (lo,, 10,, 20,, 20,)
& = (1s,, 18y, 254, 28y, 2P,,. 2P5,)

Then T = @'V is the transformation matrix. With the help of these transformations,
the energy expréssion can be written as:

E = [WrHPdr = | T+ &+H®)Tdr. ©

Expression (9) is further simplified by letting H = H + H,, where H, refers to one electron
operator while H, stands for the two electron operator. Further, the A.O. integrals (one and
two centres) were calculated using the programme of Switendick and Corbaté [11] for the
above basic function. The results indicate that there are 39 non-vanishing one-electron
integrals and 115 two-electron integrals respectively. These were arranged in matrices and

a programme was elaborated to calculate E,,; and E,,,,,; Which were expressed in terms

TABLE 1
0 EMO Epi'oj Eunproj
0 —14.85892 —14.87700 —14.86792
0.05 —14.86179 —14.87796 —14.86864
0.1- —14.86287 —14.87825 —14.86883
0.15 —14.86312 —14.87888 —14.86844
0.2 —14.86254 —14.87688 —14.86789
0.25 | —14.86118 —14.87525 —14.86579
0.3 —14.85907 —14.87303 ~14.86392
0.35 —14.85624 —14.87026 —14.86138
0.4 —14.85274 —14.86698 ~14.85841

0.45 —14.84862 —14.86324 ~14.85506
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TABLE II
Comparison of different energy calculations (atomic units). R — internuclear distance

R=16.0

Das and Waht [12] Rai and -Calais [8]
S.C.F. ’ O0.D.C. ‘ 0.U.C. H.F. { Proj. Unproj.
—14.86865 ] —14.88104 1 —14.99367 —14.85961 { 14.87679 14.86772
Present work: Q =0 —14.85982 14.87700 14.86792
—14.86312 14.87888 14.86883
(Q = 0.15) (0 = 0.15) (@ =0.1)

1 When Q = 0: there is a slight difference between the energy values of [8] and those of the present
calculation which should be identical. This difference is due to the refined mesh in the Switendick-Corbatd
programme [11] giving better values for two-electron integrals.

There are two misprints in [8], in table E, and E,, (pp909) should be replaced by E, and 2E,,, respec-
tively.

The transformation of M.Os to A.Os in [8], namely Eqs (24), (25) and (26), follows the Nesbet’s
method [10] while in the present case transformation is straightforward.

of matrix elements. For varying values of Q and R energies were minimized with respect
to A and E,,;, were obtained. The values of E,;, are tabulated in Table I. A comparison
of the present results with the values of other authors (for R = 6.0) is made in Table I1.

4. Results and discussions

The aim of the present work consists in the modification of the energy values ob-
tained by Rai and Calais by the inclusion of a higher orbital i. e. 2p,. The numerical evalu-
ation has resulted in an improvement of the energy value. It is interesting to observe that
the hybridization parameter lies between 0.10 and 0.15. These conclusions have been
drawn on a single set of energy values for R = 6.0 and varying 'Q with a trial wavefunction.
A more detailed calculation is required in this field using various sets of 2p, orbitals with
varying internuclear distance R.
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