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LCAO WAVE-FUNCTIONS AND ENERGIES FOR CUBIC
CRYSTALS
I. SIMPLE-CUBIC LATTICE

By A. WIERZBICKI
Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw*

( Received June 4, 1971)

The technique and results of calculations of the LCAO orbitals, being the basis functions
of the total symmetry representation of the cubic point group, and the corresponding energies
are presented in detail for the case of a simple cubic lattice with interaction between nearest-
-neighbour atoms. Models of four, five and seven sub-bands have been taken into account.
The density of states per unit energy range has been calculated and compared with the results
of Bloch in the cases of the nearest-neighbour atomic interaction and the almost-free electron
approximation.

1. The equation and its solution

Our purpose is to solve the Wannier-Slater eigenequation [1, 2] for a simple cubic
lattice. The solutions are the coefficient functions for the LCAO orbitals of a simple-cubic
(sc) crystal. Only solutions being the basis functions of the total symmetry representation
(I'y) of the cubic point group are of interest, because the electron density and its depend-
ence on energy can be analyzed at only one lattice site representing the other sites, and this
site can be put at the center of the coordinate system [3].

The Wannier-Slater (WS) operator for the sc lattice with one (s) kind of atomic

orbital is o
ﬁV 1 aZm N alm ;}_ 62m 3
s 3emp\ox® oy ' ez )
m=0

= ;[cos (i 5%) + cos (i %) + cos <1562):| (1)
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The number of terms in (1) extends to infinity, but in numerical practice, of course we
take only a few terms. Our purpose is to find such 4 that the WS eigenequation

WA= ¢cA )
is fulfilled. The quantity ¢ is a transform of the electron energy E in the crystal:
| E—E°—y
g=— " 3
b 3

where E° is the eigenenergy of the atomic state (s), ¢ the number of nearest-neighbour
atoms, and y and f are the respective.interaction integrals,

‘ § ¢*r =RV —U(r—R)]p(r—R,)dr, “

for two cases: (i) R, = R,, and (ii) R, is the nearest neighbour of R,. ¢ is the atomic
orbital and U the atomic potential. In the case of the s atomic orbitals the integral (4)
is equal for all nearest neighbours.

The first-term in (1) is a constant, and the second is the Laplace operator. We try to
find 4 in the form of the eigenfuncticns of the Laplace operator; at the same time, the
eigenfunctions should be the basis for the total-symmetry irreducible representation of the
cubic point group. Thus 4 = A™ consist of terms of the form

(KH); }j(xR) )

.

where x is a parameter entering into the energy
i=o0 .
g1) = Y ax” (6)
i=0

and (KH)}: ! are; the non-normalized cubic harmonics of the representation I'y [4, 5}t

We try to combine (5) in such a way that (2) is fulfilled for the largest possible
number of terms included in W,,; at the same the coefficients in the power series of &(x)
have to be determined.

The general technique by which equation (2) can be solved has been outlined in [3].
For the present case it seems to be best to illustrate it on an example. We seek to satisfy
(2) for the polynomials:

2
const; K2 x*:
KZ.RZ; v K4_R2; K6R2;
K R*; kOR*; kS R*;

KX+ Y HZY; XY 4ZY; BT +ZY;

1 In the calculations (KH)I® is assumed equal 3 times the corresponding non-normalized expression
given in Refs. [4, 5], i.e. we have put

xire (XN 2 (EY (2 - B - 2
KH)e* =\ & R) .\ R 11 L
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xkSR%; - kSRS x'°RS; -

KORXX*+Y*+2Z%; «*RAX*+Y*+Z%; «'°R*(X*+ Y4 z‘*)

RXELYS+Z0); KXY 1ZY);  KOXO YO+ Z5);

k°R®; KRS, ©'*R8;

KBRY X+ Y4+ 2%, K1°R4(YX4—}‘-'Y4+Z4); K12R4(X4+Y4+Z4 .

KPRYXC+ Y +25); w'°RY(XC+Y0+2°%); kPRHXC+Y° +2°;

B+ +2%); X+ YR4z8); kA(XB+YE4+2Z8); 0
where . |

R =X*+Y*+7°. ~ ®)

If A™ is expressed as a combination of the terms in (7), then the terms of the first column
can arise on the left-hand side of (2) only as a result of multiplication of 4™ by a constant,
say 1; those of the second column — from the same multiplication and the action of the
Laplace operator; and those of the third column — from the multiplication mentioned and
the action of the Laplace operator together with that of the operator —6i + a‘a; ' 6824 ;e

The combinations of (7) which are at our disposal, and can be then mtroduced into AF !
‘are chosen as

Jo(kR) = (KH)o'o(kR) - (%a)
and T
(KH)3'j4(kR), (KH)§js(kR) and (KH)5%g(kR). i (Ob)

In A™ the coefficient at j(xR) is put equal to 1;-the coefficients at the, functions (9) are
dlsposable parameters.

Since the first'term on the left-hand sidé in (2) is due'to’ multlpllcatlon by 1, then also
the first term of &(x) should have the same value. The second term. is dictated by the fact
that (9) are the elgenfunctlons of the Laplace operator, thus the term is —K2 tlmes the co-
efficient of 4 in W,,, i. e. 1/6 in the sc case. Thus, S -

T2

8 = 1.~-'C—6 EX (10)

where o, is a disposable parameter. It ‘s evident from (7) that the parameter is useful only
when the polynomials of the third column in (7) are sought out so that (2) is satisfied.
Also, since the terms of the 2nd column can arise on the left-hand side of (2) either from
the multiplication by a constant or the action of 4, the disposable coefficients at the func-
tions (9) arc useful only for fitting (2) in the polynomials of the 3rd column. The total
number of the disposable coefficients is then four (three in (9b) and one in (10)), and since
the number of polynomials in the 3rd column in (7) is 11, we can increase the number of
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cocfficients at these polynomials by 7 supplementary functions which are also of I'; sym-
metry:

'szz(KR)§
K*jo(KR);
sz s(kR);

AGY 5T+ ()

©*jg(KR);

A - e
o [(%) + (g) + (%ﬂjsock). (11)

Denoting the coefficients of the funcions (9b) successwely by 05 cg0 and cgo and those
of (11) by ¢a14 41,05 C6,1,05 Ce,2,05 Cs.1,05 Cazo and Cg,0 We obtain from (2) the following
system of equations:

ay = (1/120)+(1/15)c,, 1,0+ (2/4725)cy o (12a)
for the term x?;
—(1)6) 0y = —(1/720)—(1/210)c; 1 o—(1/18175)c, 0 +(2]56T)ca,1,0 (12b)
for the polynomial x®R?;
(1/120) o, —(1/1575) 054 = (11/181440) +(1/7560) ¢34 0—
—(43/16216200) ¢, 0—1/6237) c4.4,0+(4/31216185) ¢4 o+
+(1/19305) ¢g,1,0 +(2/135135) ¢ »,0—(4/63996075) cg 0 (12¢)
for the polynomial x8R%;
(1/945) ayc4,0 = (1/68040) + (167/16216200) ¢4 o—(4/18729711) ¢4 0+
+(1/36855) ¢4.5.0 +(4/38397645) c5 o (12d)
for the polynomial «®(X*+Y*+Z%);
—(1/5040) o, +(1/34650) ary¢4,0+(2/693693) aycs o = —(1/798336)—
—(1/498960).¢, 1 o +(1/6486480) 4 o +(1/324324) ¢4 1,0+
+(31/2122700580) ¢6.o—(1/579150) . 1.0—(1/2027025) €450+
+(2/1215925425) cg o+ (4/11486475) c5 1 o+(2/34459425) T 5 o (12¢)
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for the polynomial xRS;
—(1/20790) a5c4 o—(1/99099) cyc6 0 = —(1/1496880)—
—(31/97297200) ¢, o—(787/12736203480) cs o—(1/1105650) ¢4 50—
—(2[364T776275) cg 0 +(2]7952175) €5 5.0+ (1/6891885) Cg 5. (12f)
for the polynomial xR (X*+Y%+2z%);
(1/135135) 056 0 = —(2/18243225) ¢, o+ (53/1010809800) cg o +
+(1/6891885) g 5 o—(56/18238881375) ¢4 (12g)
for the polynomial x1(X®+4 Y®+Z6);
(1/362880) oz, —(1/1801800) ety o —(1/104035395) 0,c5 0—

—(1/191988225) 03¢5 o = (19/1245404160) -+ (1/51891840)c, ; o—
—(1/338328900) ¢, o—(1/29189160) ¢, ; o—(37/65996690760) 4 o+
+(1/39382200) 4 1.0+ (1/137837700) s 2 0—(1/15449405400) ¢ o —

—(2/218243025) Cg.1 o—(1/654729075) C5.2.0 (12h)
for the polynomial x*2R8;
(1/1081080) ct;4 o+ (1/2972970) o+ (2/63996075) atzcs 0 =
= (1/77837760)+(97/19848628800) c, o +(1039/483975732240) ¢4 o+
+(1/75184200) G 5.0 +(1/3979392300) cg o—(1/151091325) C5 40—
—(1/261891630) ¢4 5.0 (12i)
for the polynomial x12R4(X*+Y*+Z%);
—(1/4054050) o5c5 o —(4/T3841625) aycq o = (2/930404475) ¢4 o—
—(1723/1037090854800) ¢4 o—(137/328299864750) c5 o —
—(1/261891630) ¢4 5 o (12))
for the polynomial x'*R%(X®+Y%+Z5);

(1/34459425) atycq o = (1/1240539300)c, o—(1/21606059475) cg 0+

+(853/3064132071000) ¢ o ' (12k)

for the polynomial x2(X®-+ Y84 Z8).
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A characteristic point is that the equations (12) are not linear. The algebraic €quation
to which the system (12) can be reduced is

205 145\ 25
194, 1200, = 1) [ 1905 = o | 0o
( 27 1224 >( 2 )< B 1224) 271656 ©

+‘ 1 853\ \ 7417 (12’0 ’ 5 4y 2
— —{ay— —— ||y — — | =
799425~ 2" 88920 /\"* " 7480/ 392 o ) 21512 5671;- 0
_ | . L - 2
Its degree is four; hénce, it is equal to the number of Tﬁnctidﬁ‘sf@b). plus one. The solutions
of (12) are given in Table'], and another characteristi¢ poitit-is that all coefficients at

the functions (11) are zero. This occurs for all four solutlons of the algebralc equation
mentioned. '

TABLE 1
Solutions of the WS equation for the polynomials of the 3rd column and 4 multiple rows (Eq. (12a)-(121))
A 2] ) l . Cao C6,0 €30
1 5.540101x 102 . 776._599012 , ~5.715378 x 101 | 2.273779x 101
2 7.182403 x 10-3 . —2.719073 7.346275x 10 - 7.994031 x 101
3 9.254580 x 10~ - 2176445 | 1.015794x10t | —1.308137x 10°
4 1.276664 % 10 1.047368 x 10t | "—3.530344 x10? 1.094105x 102

Both results given above seem to be general. This means that if we add to column
three in (7) the polynomials of X,-Y, and Z of order larger than 8 and, at the same time,
we add to (9b) and (11) the correspondlng functions of oider equal to that of the added
polynomials, the degree of the dlgebraic equation established in-place of (121) is once more
equal to that of the total number of cubic harmonics introduced into A" Also, the
coefficients at the functions added to (11) then vanish for all solutions of the algebraic
equation. This means that the equations for ¢;;, and «, obtained by fitting equation (2)
for different polynomials of the 3rd column in (7) are dependent. The set of independent
equations for ¢, and a, can be obtained by choosing from éach multiple row in (7)
only a number of polynomials equal to that of the cubic harmonics of I'y of order equal to
that of the polynomials in a multiple row. The equations fitting (2) for the remaining poly-
nomials of a given multiple row are then satisfied automatically. This makes the calculation
of the coefficients self-controlled, as has been checked numerically especially for polyno-
mials in (7) of orders 10 and 12. In the first case only one Laplace eigenfunction, (KH) 13 j10s
is added to (9b) and in the second — two functions: (KH){;’J J1a and (KH)fzjl J1- In the
first case we obtain 5 independent sets of solutions with 5 coefficients in each set, whereas
in the second one — 7 sets with 7 coefficients in each set.

Also, the columns of terms can be added to (7). The terms of the p-th column of the
extended table (7) can be obtained for example from the 3rd column by multiplying by K

where
m = p—3.
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Equation (2) can'be satisfied for the p -th column when (1) the coefficients Ciss 6‘6 m and
and 'Cy, at-the functions’ C & .
KO KH) s (<R), K20 3>(I<H) Ja(<R) and K“P'”_(KH)?J‘S(KR); BRGE!
and (i) that at the ferm B ' ’
K:Z(p-—l,) ) (1 4)

in the expansion of &(x), are calculated. (In general, the coefficients at the terms x P KH) 1 fim
are denoted by ¢;,,, [3]) The coefﬁc1ents by the supplementary functions appropriate for
the p-th column :

2(p 2); (KR)

2(p 2) (KR),..

2(p 2) (KR)
: f,.u'X“,'Y“fQZ"'_v :
2= —<‘_§)‘ _,_<.1_{> +<E> g Je(KR);

x2(P=2)

K2<pT2)

(

X 4
)

k2P 05 (kR);

/

(__

Y
R

Y

) +(

ol

Js(’CR_);

(15)

T (2 (2) o

again vanish. This has been checked numerically for the sc lattice in the case of the 9 columns
added to (7). However, the degree of the algebraic equation for the coefficients — or
the number of the independent sets of solutions — does not increase when the columns
subsequent to the third one are added to (7) because the equations for coefficients at terms
(13) and (14) are linear. Thé coefficients obtained, in satisfying (2) for the columns in the
cxtended table (7) with the index n

3<n<p

(16)
enter into the equations for the coefficients sought for the p-th column as the known para-
meters.

2. The property of orthogonality

The functions A" of equal «, but different in their combinations of (9b) and (13) due
to the plurality of the solutions of the algebraic equation, are denoted henceforth by A.
They are mutually orthogonal in the three-dimensional space of the vector R because Wsc
is a Hermitian operator [3]. This kind of orthogonality has been- checked numerically
in the case of the extended solutions for the face-centred cubic lattice with'A = 1, 2, 3 and 4.
It is found to be well fulfilled for x < 2 for all 4, and — in the case of some pairs of 1 —
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for somewhat larger x [6]. Now, we examine in some detail the orthogonality between
two LCAO wave functions of different x, independently of whether their 4”* have ‘the
same indices 4 or no‘. We obtain

§ {iZA*F"”(Ri, )*(r—R;)} {JZAT""(R » K)p(r=R)}dr=

= Z A*TPR(R, 1) A" AR, K\~

~ vl J A*TF (R, K)ATM(R, 1)dQ. a”n
The integration over Q is extended over the space R of the lattice sites and v, is the volume
of the crystal cell occupied by one atom. The first of the equations in (17) holds due to
the orthogonality which — we assume — exists between two atomic orbitals centred on
different atomic sites. The replacement of the sum by the integral in the second of the
equations is permissible if 4; ; do not change too rapidly along the distance between two
neighbouring atoms. The final result of (17) is obtained readily if we consider that each
of the components of the integral over Q = 4n[3R is proportional to:

Ra
0; j(®R)j,(x’'R) R*dR. (18)

If j, and j, are expanded in series, then the integral (18) calculated at the lower limit
vanishes. At the upper limit (R, very large) the expression (18) becomes

1 1 4
— | sin{ kR — —n) sin{ x*R— —7n |dR=
KK’ 2 2
1 1 1 ] ( 1 , U
= - —— - )sin| kR— — w)cos| K R— — 7 ] —
2k’ \k+x' K-k 2 2

1 1 1 " l o (R r 19
—_— —— S —
e\ + — cos| k 5 in | K 7" (19)
which vanishes at R = R, if the boudary conditions of the model
. ! o r
sin{ kR,;— ol n]=0; sin|xR;— b n)l=20 (20)

(/ and !’ are even integers or zero) are taken into account. Equation (17) is analogous to
the relation

Y expi(k—Kk")R, =0 (17a)

L

of the theory of Bloch which holds for any k # k', the sum in (17a) being extended over
all lattice sites. It may be noted that (i) the property of orthogonality of (KH){ ! has not
been used in the derivation of (17) and (ii) equation (17) is valid for any approximate 4™
of the present scheme.



75

3. Density of states per umit range of the energy and band limits

3.1. Four and five sub-band models

Here we investigate the results corresponding to (KH),%, with /=0, 4, 6 and 8
(A =1,2,3 and 4) and those corresponding to (KH);j, with/ =0, 4, 6, 8 and 10 (A = 1,
2, 3, 4 and 5) introduced into 4™*. The density of states per unit x for one sub-band (one
of A's) is [3]:

Do = 21+ {3 k™™D ! 1

where

7 2n
I, = @n)~! _f d3 | dosin 9[(KH),F,’, B
0

0

and the cell volume v, has been put equal to 1 due to the primitive translations
(1,0,0); (0,1,0) and (0,0, 1) 22

taken into account for the sc lattice. The inflection points of D>* on the right of which (21)
decreases rapidly to zero are given in Table III. The results from the most accurate (most
fully expanded) solutions obtained in the present p_aperg (Table 1I and the corresponding
last column in Table III for the 5 sub-bands model) can be compared with the maximum
value of |k| for the first Brillouin zone of the sc lattice,

k! oy == /3 = 5.44, (23)

if the primitive translations (22) are taken into account.
The total electron charge

0(0) = ; SjD“(x)dx 24

contributed by the wave functions at site O is presented in Table IV. It is evident that even
with the most fully expanded A" the results are far from 1, what indicates that the
convergence of the sc-solutions — in comparison with the analogous results for the fcc
lattice [3] — is the poorest one. The same conclusion stems from a comparison between
the density of states per energy unit, D(e), in the present scheme with D(g) of the theory
of Bloch. This is done in Table V for the nearest-neighbour, or tight-binding, approximation.

Bloch’s D(g) was obtained by dividing 1/8 of the first Brillouin zone for the sc lattice
into 512000 equal cubes and calculating the number of cubes whose energies (computed
at the cube centers) fall within each of the energy intervals. It can be seen that only solutions
of small k (the energies are close to one of the band limits) can give a satisfactory parallelism
with the results of Bloch.

For the most fully expanded solutions attained for the 4 sub-band model about
96.1% of the integral (24) can be obtained if the upper limits in (24) are replaced by:

KL =9.90; k2 = 9.50; x> = 8.90; x} = 8.75. (25)



TABLE II

The solutions of the WS equation for coefficients at terms (13) and (14); 5 sub-band model

NI B Y N -

OO AAUNDWRNFRO VO TAUNRWLN=D

o I I T N VO SR

(=3

%y

5.186937x 10-8
—7.072856 % 10-5
5.591330% 107
~2.948370 10-°
1.125824 x 10-11
-3.293424 x 1014
7.570453 X 10-17
~1.531892x 10-1®
1.008310 x 10-22
[-2.228031 x 10-2¢
6.978583 % 10-3
~1.293384 % 104
| 1.201194x 10-¢
-9.510125x 102
| 3.114295x 10-1
~1.910000 % 10-12
|6.070200 % 10-15
2.794175 % 10-18
8.231836 x 108
1.491411 % 1071

7.664925 % 10-3
-1.652064 % 10~

2.119269 x 10-°
~1.631705 X 10~

1.068131 x 10-1
-3.635570 % 10-%3
—~4.405330 X 10-15
-2.844753 X 10716
-8.275112.x 10-18
~1.489609 x 10-12

9.854177x10°3
~2.652057 x 10-4
3.959736 x 10~
~3.730761 x 10~
2.422148 % 10710
~1.145908 % 10-12
4.188990 x 10-15
~1.121186 % 10-77
4.011161 x 10-20
2.003783 x 10-22

I Ca,m

]—7.433362

|-1.044231 x 10-3
-3.120609 x 10~
|-1.611861 x 10~7
_3.786758 x 10-?
_7.146255 x 10-11
~1.244900 x 10-12
~2.091489 x 10-14
—3.448255 % 10-16
-5.625601 x 10-18

1-3.200597
3.272487 % 10~
7.724247 x 10-3
2.489132 % 10~
6.331587 » 10~
1.202729 % 10-°
1.147350 x 10-11

2.793797 x 10-13

|-1.862058 x 10-14

5.558623 % 10-16

—1.579114
1.269384 x 101
| 1.279995 <102
| 1.218891 x 10-®
1.159050 x 104
1.101127 x 10-3
1.045672.x10-¢
9.928919 x 10-3
9.427526 < 10~°
8.951424.x 1010

3.592993
-1.482242% 10-3
6.663146x 10-°
1.096314 x 108
9.691945 % 10-°
—5.499055 x 1011
—5.204501 % 1012
~1.647350 x 1013
-4.126568 X 10-18

1-9.333125 x 10-17

Ce,m

| -
—7.747804 % 10*

~2.673135x 10~4
2.898690 x 10~
.1.829871 x 10-%
-3.862963 x 10-°
-3.708196 x 10-10
~8.794492 x 10-12
~1.679129 % 10732
-2.953054 x 10-15
—4.994906 % 10~

\ 3.849273 x 101
|-4.497026 % 10-1
~1.149467 % 102
-2.396164 X 104
-3.292508 10~

| 1.180422% 10-8
2.702432 X 10-°
1.076297 x 10-10
2.656999 x 1012
3.247247 x 10-14

-2.648508 x 102
—2.155763 x 101
~2.076968
-1.981926x 101
|-1.884066 % 10-2
~1.789294 x 10-3
~1.698959 % 10~4
|~1.613147 x 108
[-1.531674 % 10-¢
~1.454322 % 10~7

| 1.541906 x 10
5.425807 x 10-2
5.845627 x 104
1.031540 % 10-3
2.024653 x 10-7
4.166566 % 10-°
8.716359 x 10-11
1.819669 % 10-12
3.764371 x 10-14
7.712876 x 10-16

| |
' 1.294823 x 102 | 1.090269 x10* |—4.208868 x 10*
|~4.163914 x 10~% |-2.857761 x 10~* |—3.775417 *x10-3 !—3.047357 x 102

Cs,m

4.326579 % 10t
8.103774 x 10-2
5.623396 x 10~4
7.728306 x 10~
1.202347 x 10-7
1.879504 x 10-°
2.940078 x 10-1
4.620712 x 10-13
7.305910 % 10~
‘v 1.161744 x 10-1¢

| 2.734583 x 101
-9.314152 x 10-1
|-2.556414 102
-5.377844 X 10+
~7.570621 510
| 1.678297 x10-¢

| 5727041 x 10-*

C10,m

1.535017x 102
3.177370 "
8.311333x10-3
4.016504 x 10-3
7.216623 x 10~7
1.599097 % 108
3.204762 % 10-10
5.961140 x 10-12
1.060585 x 10-1
1.836611 x 10-15

1-1.123064 x 10°
|-1.667393 x 10

~3.819581 % 102
~7.060931 x 102
~7.010122x 11-5
"1.562436 x 10-%
1.158335 %107

2.328012x 10710 | 3,933267 x 10-?

| 5.808668x 10732 8.581116 10-11

7.237795 x 10-14

—6.508970 x 102
~4.772234 % 10
~4.623036
-4.410620 x 10~
—4.192621 x 10-2
—3.981714x 102
|=3.780696 x 10~4
—3.589741 < 10-5
-3.408442 % 10-¢
~3.236309 % 10-7

|—1.050127>< 102
8.649435 < 102
2.916951 x 10-3
6.517640 % 16-°

| 1.255320x10-¢
2.285658 x 10-8
4.116884 % 10710
7.514517 x 1012
1.404341 x 1013
2.688746 x 10-15

1.288361 x 102

7.133772x 10713

-1.248889 x 104
—7.708553 102
~7.473644 % 101
~7.132824
—6.779756 % 10~
—6.438326 % 10-2
~6.113163x10~2
~5.804373 x 1074
-5.511219x 10-5
-5.232892.x 10-%

1.462872 %103 .
7.001450 % 10~
3.508885x 102
4.954056 % 10~*
4.928074 % 105
1.952895 % 10-8
7.246016 % 10-10
—2.945592.x 10-11
~7.854059 x 10-12
~1.826217x 1014

-8.879524 102
3.231007 % 10~7
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TABLE 1l (continued)

7L . | m Gy l Ca,m Co,m C8.m C10,m
1 | | | .
| 2 | 7.198652%x 10~ | 4.594992 % 10-3 |~5.165406 %104 | 2.386912x 103 |-3.025683 x 10-2
3 !—7.756226 %108 | 1.109925x10-¢ —1.160259x10-> | 5.481402x10® |-6.780221 x 10—
4 5.707318 x 1010 | 1,828869x 10~8 |-1.947043 x 10~ | 9.251464 < 10~7 |—1.158548 X103
5 ‘ 5 -3.047659 x 10712 | 2.404703 x 10-10 |-2,774506 x 10—° | 1.348644 <108 |-1.763393 x 10-7
| 6 | 1.237436x 107 | 2,512188 X 10712-|-3.466748 x 1011 | 1.776236 x 10710 |=2.500743 x 10~
|7 1-3.922870x 10717 | 1.663848x 1014 |_3.728520 x 1013 | 2.140812 x 10~12 |-3.360558 x 10-11
8 | 1.023023x 1019 |—,8.620014 X 10717 |-3.071268 x 10~1% | 2,342008 x 10-14 |4,297265 x 10“13
9 1[~2.016202 % 10722 —6.132402 % 1018 |-6.957579 x 1018 | 2.233475 % 10-16 |-5.201556 x 1015
TABLE 11
The inflection points K? of D%*x) for the 4 sub-band and 5 sub-band models
4 sub-band model
T S e — e —
>\l 1 1 2 ' 3 ‘ 4 } 5 } 6 i 7 ‘ 8 9
oS | — | —
1 52 27 15 12 11 10.4 10 | 9.7 9.5
2 78 2% | 17 13 11 10.2 10 9.6 9.1
3 67 23 14 12 | 10 9.7 9.6 | 9.1 8.7
4 | 51 i 24 | 14 11 ‘ 10 ‘ 9.9 11 10 9.8
5 sub-band model
L { S — _
1 52 ; 24 ‘ 17 13.7 11.8 10.8 10.1 9.7 9.4
2 | 13.4 ’ 7.8 6.8 6.5 6.6 7.9 6.9 6.6 6.5
3 6.0 35 3.0 2.9 | 2.8 2.8 2.9 2.9 2.9
4 48.2 | 16.0 11.0 9.9 | 9.2 8.7 8.3 8.1 7.9
5 108 l 18.0 | 12.0 | 102 | 9.5 9.1 9.0 8.8 8.7
TABLE IV
Total electron charge Q(O) contributed by the wave functions at site O
_ e SN - S
Model |
BiPer) 3 4 5 | e | 7 | 8 | o9
| | =
4 sub- | ! lu
“bands |4.23x103 3.13x102| 7.09 x 10| 3.66 x 10| 2.53 x 10 2.00 x 10| 1.69 % 10%| 1.50 X 10% 1.37x 10
5 sub- |

-bands |7.40x103

|
9.15x 10% 2.39 % 107} 1.47 X 10% 1.15%x 10| 1.13 x 10%| 9.67

18.70

‘ 8.17
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TABLE V

The density of states D(¢) per energy unit for the 4 sub-band model in comparison with Bloch

e s wWEE Total Bloch

1 | 2 3 4 D) D(e)

1.033 — 1.000 ' 0.000 [ 0.000 0.000 0.000 | 0.000 0.000
1.000 — 0.967 | 0.012 ‘ 0.011 | 0.015 0.008 ! 0.046 0,046
0.967 — 0.933 0.023 0021 | 0028 | 0014 | 008 0.086
0.933 — 0.900 0.030 0.027 | 0.038 0.019 ' 0.114 0.115
0.900 — 0.867 0.036 l 0.034 i 0.047 0.024 | 0.141 0.139
0.867 — 0.833 0.041 0.038 0.052 [ 0.029 | 0.160 0.163
0.833 — 0.800 0.046 [ 0.044 0.065 0.033 | 0.188 0.185
0.800 — 0.767 0.052 | 0.048 | 0.067 0.038 | 0.205 0.207
0.767 — 0.733 | 0.058 0.053 0.078 | 8.032 | 8.221 0.231
0.733 — 0.700 0.062 ‘ 0.057 ‘ 0.085 4.177 4.381 0.254
-0.700 — -0.733 4.681 0.000 0.000 0.000 | 4.681 0.254
—0.733 — -0.767 9.066 ‘ 0.000 0.000 0.000 ‘ 9.066 0.231
—0.767 — -0.800 2.087 0.000 0.000 0.000 2.087 | 0.207
-0.800 — —0.833 0.000 | 0.000 0.000 0.000 | 0.000 0.185
—0.833 — -0.867 0.000 0.000 0.000 0.000 ‘ 0.000 | 0.163
-0.867 — —0.900 0.000 0.000 0.000 0.000 0.000 ‘ 0.139
—0.900 — -0.933 0.000 | 0.000 i 0.000 0.000 | 0.000 0.115
-0.933 — —0.967 0.000 | 0000 |  0.000 0.000 | 0.000 ‘ 0.086
-0.967 — -1.000 0.000 ‘ 0.000 I 0.000 0.000 0.000 | 0.046
-1.000 — -1.033 0.000 0.000 0.000 |  0.000 0.000 |  0.000

This gives one extreme value for the energy equal to 1 and attained by all & at x = 0;
the other value is & & —0.77 obtained at x = 5.3. Thus the band width is ca 909; of that
of Bloch2, because the Bloch energy corresponding to [3] and (22) is

E—E°—y
e(ks, ky, k) = T
q

The extrema of (26) are: (i) e =1 attained for k, =k, =k, =0 and (ii) ¢ = —1
attained for k, ==, k, = k, =0 (or for k, = k, and k, obtained by a cyclic interchange
of the subscripts in the last expressions).

Tables VI and VII give a comparison between the nearly-free electron

1
= g(cos k.+ cos k,+ cos k). (26)

D(e) = %Z y -;1% [4740, 0] = Z x” DN (x) @7
A

2 Tn the case of the 5 sub-band model the extreme values of energy are respectively 1, attained for, all &%,
and £t = —0.86.
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of the present method with the same D(g) of Bloch in the interval of |k| between zero and
the value for which the Fermi surface touches the boundary of the first Brillouin zone, i.e.

k| =x = . (28)
In this interval D(g) of Bloch is exactly
D(e) = |k|/2n” (29)

if h and m, are put equal to 1. The comparison has been limited only to the interval deter-
mined by (28) because for k] = m.

Bloch’s D(e) decreases sharply to zero and can be obtained only in an approximate way,
analogous to that applied for Bloch’s D(g) in the tight-binding case; also D(g) of (27) are
inaccurate in the interval of x larger than that corresponding to (28) in view of the
inaccuracy of D(g) obtained numerically for large x.

3.2. Seven sub-band model

At the next step, we can introduce cubic harmonics with / = 12 to the expansion,
in addition to those with I =0, 4, 6, 8 and 10. Then we have two distinct components:

xtytz* 6 /1
KH =2 4| — | (KH){— KH)L —
(KH)131 + < > ( 10 (2 7 19> (KH)s

R'? 115
- (5—1}’78-@) (KH)g'+ (ﬁﬁ) (KH)y* - ﬁ%ﬁ (302)
KHYsz = (%) + (%) + (%) - (5) wmis- (55 )y
- (el om

where (KH)}! is that of the present calculations (see the footnote in Section 1). Let us note
that a printing error in [5] in the coefficient at (KH)fg in (KH){;‘@ has been revealed.

The respective normalization coefficients of the functions (30a) and (30b) to the
value 4n are:

; (1a)

11 \¥3-7-13-17-19-23
41 - 4x 32

(475112,1)_% = (

(4nl 5, 2)—ﬁ (31b)

25 /7-13-17-19-23 - 41\*
32 6:Lm )

The introduction of (KH)i3; and (KH)i3, into A4 provides a 7 sub-band model. The
coefficients at the components (KH) 1j, and o, have been calculated only for the case
of the largest power m equal to zero (Table VIII). All coefficients at the supplementary
functions of the type given in (11) vanish.
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Even a model not greatly expanded in powers of x should give a fairly accurate
description of the density of states at small k. In the case of the 7 sub-band model we check
this for the nearly-free electron approximation at the limiting value of ¥ = 0. Then we
have from all sub-bands:

2=7
lim =2 Y D% (x) = (2m)~%(0.118201440 +0.203462699 +0.072243136 +
i=1

k-0

+0.260624669 4 0.056404756 +0.197841990 +0.091221182) =
= 0.999999872(2n)1. (32)
Hence, the nearly-free electron density of states per unit range of energy at very small « is

k1Y Do = 0.999999872(2m) "'k & (2m) 'K, (33)
A

as might be expected on the basis of the almost-free electron solutions of Bloch which can

be considered as exact in the energy interval below the critical point (see equation (29)
and the end of Section 3.2; ; c¢f. also [3]).
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