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SECOND-ORDER PROPERTIES OF THE WATER MOLECULE
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The Karplus-Kolker uncoupled Hartree-Fock perturbatlon theory is apphed to the
calculatlon of the magnetic susoeptlblhty and electric dipole polarlzablhty of the water
molecule from one-centre expanded Hartree-Fock molecular orbitals. The results obtained
support some theoretically expected properties of the Karplus-Kolker variation-perturba-
tion scheme.

In recent years much attention has been paid to the calculation of the so-called second-
-order molecular properties. The most frequently applied perturbed Hartree-Fock method
[1, 2] requires a knowledge of a number of the excited-state wavefunctions. This difficulty .
can be circumvented in the variation-perturbation techniques [1, 31, e.g., by using the so-
-called product approximation [3]

0
= fu;

where u; is the first-order perturbed orbital, % the unperturbed orbital and f; the appro-
priate variation function.

The method developed by Karplus and Kolker [4] involves two further approximations.
Neglecting the self-consistency conditions, i.e., uncoupling, and omitting some terms which
arise due to the non-local character of the Hartree-Fock Hamiltonian, one obtains a func-
tional which does not include any two-electron integrals. On the other hand, the perturbed
Hartree-Fock (PTHF) scheme requires the calculation of numerous two-clectron integrals.
A comparison of the Karplus-Kolker (KK) and PTHF schemes [5] shows that in the case
of pure-imaginary perturbations the errors introduced by both approximations should
almost cancel out each other. However, for real perturbing operators the KK results should
differ significantly from the PTHF values. Calculations of atomic shielding factors and
polarizabilities [6] support the theoretical analysis [5]. A quite similar relation between
the KK and PTHF approaches is also expected for molecules.

In this note we shall study the second-order properties of the water molecule. We
have chosen-the paramagnetic part of the magnetic susceptibility (paramagnetic suscepti-
bility) and the electric dipole polarizability as examples of the second-order properties
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related to a pure-imaginary and real perturbations, respectively. The molecule is placed
in the yz plane and z is the symmetry axis.

The simplest molecular wavefunctions are the one-centre expanded (OCE) molecular
orbitals. For the water molecule the OCE Hartree-Fock wavefunction has been calculated
by Moccia {7] and gives good ground-state energy, dipole moment and diamagnetic
part of the magnetic susceptibility. Moccia [8] evaluated also the dipole polarizability
and the paramagnetic susceptibility using the PTHF method. This allows us to compare
the present KK results with those obtained by a more advanced treatment.

The computational effort involved in the KK method depends on the choice of the
variation functions f;. It is convenient to choose f; as a polynomial of an appropriate
symmetry with the coefficients to be varied. Then, the min mization of the corresponding
functional  [4c] leads to a set of linear equations for these coefficients. This method has
been utilized in the present study. Moreover, to estimate the convergence of the KK
results we calculated both the paramagnetic susceptibility (y7) and electric dipole polariza-
bility («) with two variation functions each. In both cases the second function (f3}) included
all the terms of the first one (f3}).

In the case of the paramagnetic susceptibility we have taken

)
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where' (4, p, v) = (1,2, 3) and the gauge origin is at oxygen.
The results obtained are compared with these of Moccia [8], with the susceptibilities
calculated from the multicentre wavefunctions, and with experimental data.

TABLE 1
Diamagnetic and’ paramagnetic contributions to the magnetlc susceptlblhty tensor (m ppm - cgs)
This work Reference results

OCE OCE o STO» STO® _

KK | KKII Pl{‘gF PTHF | pruF | Dxperiment [10]
] [ | -
| 1434 | 1.582 1.909 1.993 | 2.076 | 2.33
ng 0.499 | 0.602 0.641 | 1.825 0.444 0.79
Zfz 0.310 Q.327 0.876 2.520 ¢ 0.849 1.40
XAv | 0.748 0.837 | 1.139 2.113 1.123 1.51
Xxx | —16.548 —16.548 —16.56 —16.971 —16.313 —16.0+1:8
xyy —14.591 —14.591 —14.60 —13.407 —14.723 —129+1.6
Zgz —15.259 —15.259 —15.27 ~15.361 —15.512 —14.9+2.0
div —15.467 —15467 | —1548 —15.246 —15.516 —~14.6+£2.0
Yot | —14.719 —14.630 —14.33 - —13.133 —14.393 —-13.1+20

a Calculated with the mlmmal basis set od Slater -type atomic orbitals (STO) [9].
b Extended STO basis set [9].
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A comparison of the KK and PTHF results shows that in this case the agreement
is rather satisfactory. The worst result was obtained for y7, for symmetry reasons and also
due to the inaccuracy of the product approximation. It apears that if a richer variation
function is used, the paramagnetic susceptibility should almost converge to the PTHF
value. )

The diamagnetic contribution to the magnetic susceptibility tensor is easily evaluated
from the ground-state wavefunction. The calculated values are in good agreement with
other theoretical results and coincide with those published by Moccia [8].

To evaluate the dipole polarizability we used one- and two-term variation functions:

1 o _
fix a blixxa ix — blixx+b2ixxz

flly = bliyy’ ll; - bliyy+b2iyyz

I N | G
[} fiz"‘ iz"‘bliz,z

The convergence of the KK method was analysed in the work of Liebmann and Moskowitz
[11], who calculated « using the LCGO (linear combination of Gaussian orbitals) wave-
function [12]. To obtain some information on.the variation functions employed in this
note, we compare our results (derived using the same LCGO function) with theirs.

TABLE 11
Electric dipole polarizability (in 10-2%cm?)
OCE wavefunction LCGO wavefunction
This work This work Experiment
— —| PTHF 3] —| KK[11]
KK-I KK-II KK-I KK-11
Uye 1021 | 1745 0.920 0.980 0.982 1226 | -
oy, 1.483 1.632 1.202 1.375 1.413 1.651 | —
2,, 1.301 ! 1.301 1.067 1.181 1.181 1.452 —
ot 1.268 1.559 1.063 1.178 1.192 1.443 | 1.452

2 Taken from Ref. [11].

It is evident that for the dipole polarizability the KX values do not converge to the
PTHF results. A comparison of all the LCGO calculations shows that further improvement
of the variation function would increase the difference between our OCE KK results and
those of Moccia. A similar trend has also been noticed by Liebmann and Moskowitz
[11]. In conclusion we may say that the performed calculations verify the general
predictions concerning the KK scheme [5]. The obtained values of the paramagnetic
susceptibility which correspond to a pure-imaginary perturbing operafor, are in much
better agreement with the PTHF results than the dipole polarizabilities. Thus, it can be
expected that the method of Karplus and Kolker will give quite reliable results for any
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pure imaginary perturbation provided a sufficiently flexible variation function f; is used.
On the other hand, for real perturbations appropriate corrections to the KK scheme [6]
should be calculated.
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