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THE DOUBLE ISING CHAIN
By J. M. KOWALSKI
Institute of Mathematics and Theoretical Physics, Technical University, Wroclaw*

(Received June 1, 1971)

The thermodynamics of the simple spin model such as the double Ising chain in a zero
field is given and the zero-field susceptibility is calculated.

1. Introduction

The interest in the theoretical investigation simple spin systems, among these also in
one-dimensional models, persists to the present time. Such models, apart from their theoret-
ical significance, are appropriate in the investigation of the magnetic properties of some
compounds. In these compounds the magnetic ions are arranged in chains with strong
interaction within each chain but rather weak interactions between chains.

In this paper we examine a certain version of the one-dimensional Ising model, for
which the exact solution can be given. Our model consists of 2N “spins” arranged in

Fig. 1. The double Ismg chain (a,— = 41, g; = +1)

a double chain, as represented in Fig. 1, and the interaction is limited to the nearest-neigh-
bour pairs only.
The total energy of the system is given by

H,y = —h Z o—h Z wi—J Z 6:0i+1—J > Z Uity 1—J 3 Z 10y L
1 i 1 11 1

where h is the external field strength in suitable units, and J;, J, J; are the exchange para-
meters.
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In a recent paper Kosevich and Galkin [1] considered the model of a double polymer
chain with the Hamiltonian identical to (1) in order to study-the phase transition corres-
ponding to the denaturation of DNA. The phase transitions are possible in their model
since appropriate . statistical weights were chosen for the different states of a chain,
according to the character of the denaturation process.

However, the simple “pure” Ising variant has not been considered in their paper.
For such a simple case the thermodynamical functions in a zero magnetic field can be
obtained by standard methods and it is also possible to examine them in relation to the
character of interactions inside and between chains, which is the subject of the present
paper.

The ends of the chain described by (1) may be treated in two different ways:

a) as free ends (the summation index = 1,2, ..., N-1),

b) as in a cyclic chain, when i =1, ..., N and

Ony+1 = 015 Hyii =M. @

- The partition-function associated with (1) is. -

. -
Zy = Z exp (—fH,y), (B =S ;,1‘,) . 3

conf

The summation in (3) goes over all configurations of the system. The corresponding expres-
sion for the free energy taken per spin is

fon = —QBN) " 'In Zyy,. @

According to general results obtained by Griffiths [2] for a wide class of the spin systems,
the following statements are valid in our case: R

a) for arbitrary values of (B # 0) and the parameters h, J;, Jy, J; the sequence of
functions f;, is convergent

lim fon = f ®)
Nooo
here f is the free energy in the “thermodynamical limit”,

b) fis independent on the conditions imposed on the ends of the chain.

Moreover, it can be easily proved (see also [2]) that:

©) if the functions 7,y are convex functions of some variable, then f is also convex,

d) the sequence of derivatives of the convex functions f; is convergent to the: deriv-
ative of f, at every point where the derivative of f is continuous. Note, in addition, that
if f3 are odd (even) functions then f is also odd (even), respectively.

According to b) the most convenient boundary conditions can now be chosen in
order to calculate the explicit form of f. Thus, for cyclic conditions, the free energy may
be obtained with the aid of the transfer matrix method. This commonly used method
(see, e. g., [3]) has been already applied to study the one-dimensional Ising model with
an arbitrary spin [4] which is similar, in some aspects, to the model described above.
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2. The transfer matrix method

For cyclic boundary conditions the partition function Z,y connected with (1), may be
written as

N
Zon = 3 1 exp [$loi+ 1) +uoio;, ( +opitti o+

conf, i=1
Do 0 g i 1) TR )] (6)
where
Cu=pJ, v=pl, w=pJy, 1=ph ()

Further, after introducing the matrix J (the transfer matrix) with the matrix elements
(aulﬂ"o"y’) = exp [%l(a+y)+uaa'+vuu'+%w(au+a'u')+%l(a’+u’)] ¥

it is easily seen, that the partition function may be rewritten as

. g N
Zoy = TrT7. 9
The matrix 7
eZl+u+u+w el—u+v el+u—v e—u—v+w
p el—u+v eu+u—w e YW e‘—l+u—v (10)
= +u— —u—v— - L1-
eluu euvweu+vw e1l utov. .
e—u-—-v-(—w e-l+u—v e—l—u+v ew—21+u+v+w

is, as usually, the symmetric real matrii, with real eigenvalues.

Besides, since the matrix elements are positive, there exists a positive eigenvalue 4,,,
greater than the absolute values of the other eigenvalues, which is a single root of the
secular equation (Perron’s theorem, see e. g. [S]).

Thus " ;

lim (Z,)'™ = 2, (11)

Noow
and

[=lim fox = —@B) " lim In (Zpy)'" = =)' In lim (Z,9)'"" =

N-oow Noow N->w

= —2p) " '1n A, M (12)

For 7 = 0 (/ = 0 in (10)) the matrix 7 can be transformed to the quasi-diagonal
form by the similarity transformation 7 — Q7 Q71,

,[10 0 1]
1fo1r 1 o __,
Q'—ﬁ 01 -1 ol=2" (13)

10 0 —1
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In such a way, after solving simple quadratic equations, we obtain the eigenvalues:

44,2 (0) = 2(ch(u+v) ch w £ Veh(u+1v) sh’w+ch?(u—v)),
A3,4 (0) = 2(sh(u+0) ch w Vsh?(u+2) sh®w +sh®(u—v)). (14)
It is easily seen that
An(0) = 2,(0) = 2(ch(u+2) ch w+ V' ch*(u+v) sh®w +ch?(u—uv)) (15)

for every values of u, v, w.
When w = 0 (no interaction between chains) from (15) we obtain

4,(0) =4chuchuo. (16)
Hence

= —3(8"'m2chu+p~"n2cho) an

as would be expected, if we compare (17) with the well-known result for the single Ising
chain.

From (15) and (12) we obtain the free energy for our system and therefore, the cor-
responding thermodynamic quantities, such as the internal energy and specific heat.
Fig. 2 shows the energy in a zero field for several values of the interaction constants.

U
2/31+13,]
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|
075 |
25/31 |
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»
0.25 | - :'_3:1
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Fig. 2. Internal energy for J; = J, = J. The ordinate denote the normalized energy with respect to ground
state, the dotted curve correspond to the energy of the single Ising chain

Fig. 3 shows the specific heat. The explicit expressions for the energy and specific heat are
omitted here.
The high-temperature expansions for the partition function and internal energy U
may be also obtained immediately and they are
JI+J3+J3
/1,,,(0):4(14. R —%52+...> (18)

U= —2+124+75+... (19)
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From (15) we may also obtain the leading term in the asymptotic expansion for 4, (0)
when T tends to O.

el +|J2f+ 73]

2.(0) ~ e kT s (U, >0) (20)

x>
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|
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Fig. 3. Specific heat. The dotted curve correspond to 2 C/k for the single Ising chain

3. The magnetization and the zero-field susceptibility

A one-dimensional model with the finite-range interaction, such as the one used in
this paper, should not exhibit phase transition. Let us recapitulate known arguments
(see e. g. [6]) adopted for our case.

-As we mentioned above, to each value of the field 4 corresponds a single root A
of the secular equation

det(7—-A-D=g(l,})=0 1)
where g(/, 1) is an analytic function of the /, A variables satysfying the condition

glA,) # 0. (22)

According to the well-known theorem of analysis the equation (21) determines 4,, as the
analytic function of the variable / = Bh. Consequently, f— the free energy in thermo-
dynamical limit given by (12) is an analytic and, of course, even function of the external
field for T # 0.

Introducing now the magnetization myy(h) for the system consisting 2N-spins

on

myy(h) = — oh

23)
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(we have nyy(0) = 0,i. &. the finite system does not exhibit spontanéous magnetization)
and the magnetization in the thermodynamical limit ;

m(h) = Hm m,n(h)- (24)

N-w

we obtain, after taking into account the statement d (see Introduction) and (12) that
mh) = — — . (25)

The immediate consequence of (25) is that m(h)f is a continuous and odd function of A.
Hence, the spontaneous magnetization m, defined as

L me = lim m(h) ; (26)
is equal to zero in the whoge 'te‘mperaturze range’(O, + oo),»‘-, ?s may be expected.
Now using the method,%as in [4], we calculate the zero-field susceptibility x,
i om
‘ = . 27
"0 = Bhfymo @7
We have
0°f KT 8% B &0, 4,)
Ko=— =31 — =5 73 = — 51 —. 28
oh Ih‘=0 2My Oh lh:o 20m 8300, Au)
In our case
g, ) = 2*+g3(DA° +2:,(D2% + g1 (DA +go(D) (2%
where
g5(D) = —2¢""(e™"+ ch2le”),
g,() = 4[ch 2I(e*" sh 2v+ €’ sh 2u)+ ch 2w sh 2(u +v )],
g.() = —8e***(e™" ch 21 sh 2u sh 2v+e" sh 2u sh 2v),
2o(D) = 20(0) = 4(ch 4u ch 4v— ch d4u— ch 4v+1). (30)
Thus, finally
| B 85,0+ 82Ot 21,u0) 2

Ko = — -
g 2 423 +3g5(0)A2+22,(0) + £4(0)

where 4, is given by (15). Numerical calculations of o, which were based on this expression
are presented heére graphically (see Figs 4, 5; 6, 7).
From (31) we may obtain also the high and low-temperature expansions for ..
Thus, e. g.
kT kg = 1+(Jy+J,+J5) B+ ... 32)



63

Fig. 4. Inverse susceptibility for ferromagnetic-ferromagnetic interaction (J; = J, = J > 0, J; > 0}
Juy10° ‘ "

T} Sm— —
30
' 2
25 | 133, %10
27 : : , Si—
20 : ® 3,-0 |
8 /«. o @ 7= .
15 N @ =57
70

Fig. 5 ' Fig. 6
Fig. 5. Susceptibility for ferromagnetic-antiferromagnetic interaction (Jy = Jy=J >0, J3<0)
Fig. 6. Susceptibility for antiferromagnetic-antiferromagnetic interaction (/; = J, = J <0, J3 < 0
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Fig. 7. Susceptibility for antiferromagnetic-ferromagnetic interaction (J; = Jy, = J < 0, J, SO)
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4. The molecular field approximation (MFA)

In this section we compare the exact solution with the solution given by MFA. In
this approximation the chains are treated exactly with respect to the interaction of spins
in each chain and the interaction between chains is approximated by the corresponding
self-consistent field.

For this purpose, we take Hyy in the form:

HZN = H(z%(al, 0!2)+H§;113(“1s az) (33)
where

N

N N N
Hfz% = J3Najoy —(h+J50,) Zlai—(h+J3“1) leui_', Zlaio'iﬂ—-]z Zﬂiﬂi-l-l
i= i= i= i=1

H5Y = —J, Z (01— ) — 1), (34

oy and o, are here the arbitrary parameters, to be determined later.

From Bogolubov’s inequality (see, e. g., [2]) we obtain (for the cyclic boundary condi-
tions)

2fn < sz = J30,q, +f(0)(l Uy, U) +f1\(ro)(la oy, )= J 30ty —<ody) (@ — ), (35)

where

N N
0, a,5) = —(NB)™* In Y exp[(I+wa) Y ti+s Y titieq],
=1 i=1

conf.
(@=oay,0, s=uuv, I=+1) (36)

is the free energy per spin for the single Ising chain, on which the “field” & = h+Jyo
acts, and
N, u)
oh

f(O)(l Ay, U)
oh

o)y =

Y (37

The well-known solution for the single Ising chain (which may be easily obtained
using the corresponding transfer matrix) gives

lim /70, o, 5) = fO, a,5) = — 7 In [ ch (I + wa)++/¢** ch® (I+wa)—2 sh 25 ] (38)
N-co

where f(© is the analytic function of the variable I+ wa. Hence we obtain that Bogolubov’s
inequality is also valid in the thermodynamical limit, i. e. the index N in (35) and (37)
may be ommited.
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The arbitrary hitherto, parameters a;, o, are now determined from the nccessary
cond1t10n for the minimum of £ )(ocl, %),

7o _ e
= 0, = ] 0- 3
. o (39)
Hence
(0) (0)
P
. .73 Ooty
1 af(")(l a(O) U)
o0 = L e (40)
2 ey 0oty .
and
FUSY, 0 = Jy00u0 +F O, 00, )+ O, po, u). 41

(Because of 0% /da? > 0, we see that 3 f“)(a,, ) corresponds to the minimum of £
if J; is sufficiently small.) % f (”)(ao, ,uo) is now the upper bound for the exact free energy.
Of course, 2f = ™ when J, = 0 (i. e. no interaction between chains).

The equations (40) are just the molecular field equations. When 4 = 0 their explicit
form is

sh wg sh wao
70 \/s_hz__v_\zuo o’ \/sh2 Wog +e e

It is easy to interpret the equations (42) for ferromagnetic interaction when J; = J, = J
(J > 0, J; >.0). The right-hand sides of the system (42) are then the increasing and convex
(upwafds) functions of the variables wy, and wo, respectively. Apart from the trivial

solution g, = py = 0 the system (42) has then also the non-zero solution 6y(T) = py(T)
in the interval (0, 7,). The critical temperature 7, is determined by the equation

42)

= 2J. (43)

3

@D (7,=F7)
@ (7,=3)

@ (5=57)
I>0

W 2% 3 4 5 6 V7 kT

kT, KT kT
3 =746 3 a2 2.346 3 ~6.730

Fig. 8. Spontaneous magnetization of the double Ising chain in the molecular field approximation
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The low-temperature expansion for the ¢, has the form
0g = 1—1e™ 2wy | (44)

The plots of o6, vs T are given in Fig. 8.

In conclusion, it shou'd be emphasized that the MFA — “intuitively obvious”,
especially for small J;, gives quite wrong results compared with the exact solution,
even in such a case as that considered above, when the system is divided into two macros-
copic subsystems treated exactly and interacting via the self-consistent field.

In contrast to the upper bound estimation of f, we obtain a qualitatively correct
result when we estimate its lower bound. From the known inequality for the matrix norms
(see, e. g., [7]), we have

i) < [X, THWITE (45)

Hence
Jf(r) = O (46)

where

Oy = — ‘% In {8[ch 2w ch 2(u+0v)+ ch 21 ch 2(u—v)]+(2 sh 21"+ *)2}  (47)

orld
and finaily %— == 0. The exact f(h) becomes equal to its lower bound for J; = J, =0,

i. e. when the system consists of N statistically independent pairs of spins.

The author is greatly indebted to dr J. Czerwonko for suggesting the problem and
stimulating discussions.

The author is also grateful to Mrs Rutkowska from the Computer Centre of our
Institute for programming and carrying out the numerical calculations on the “Odra 1204”
computer, and to Mr L. W. Zych for drawing the figures.
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